orcaslicer/src/slic3r/GUI/Gizmos/GLGizmoFdmSupports.cpp

613 lines
23 KiB
C++
Raw Normal View History

// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
#include "GLGizmoFdmSupports.hpp"
#include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/Gizmos/GLGizmos.hpp"
#include <GL/glew.h>
#include "slic3r/GUI/GUI_App.hpp"
#include "slic3r/GUI/MeshUtils.hpp"
#include "slic3r/GUI/PresetBundle.hpp"
2020-03-09 09:02:06 +00:00
#include "slic3r/GUI/Camera.hpp"
namespace Slic3r {
namespace GUI {
GLGizmoFdmSupports::GLGizmoFdmSupports(GLCanvas3D& parent, const std::string& icon_filename, unsigned int sprite_id)
: GLGizmoBase(parent, icon_filename, sprite_id)
, m_quadric(nullptr)
{
m_clipping_plane.reset(new ClippingPlane());
m_quadric = ::gluNewQuadric();
if (m_quadric != nullptr)
// using GLU_FILL does not work when the instance's transformation
// contains mirroring (normals are reverted)
::gluQuadricDrawStyle(m_quadric, GLU_FILL);
}
GLGizmoFdmSupports::~GLGizmoFdmSupports()
{
if (m_quadric != nullptr)
::gluDeleteQuadric(m_quadric);
}
bool GLGizmoFdmSupports::on_init()
{
m_shortcut_key = WXK_CONTROL_L;
m_desc["head_diameter"] = _(L("Head diameter")) + ": ";
m_desc["lock_supports"] = _(L("Lock supports under new islands"));
m_desc["remove_selected"] = _(L("Remove selected points"));
m_desc["remove_all"] = _(L("Remove all points"));
m_desc["apply_changes"] = _(L("Apply changes"));
m_desc["discard_changes"] = _(L("Discard changes"));
m_desc["minimal_distance"] = _(L("Minimal points distance")) + ": ";
m_desc["points_density"] = _(L("Support points density")) + ": ";
m_desc["auto_generate"] = _(L("Auto-generate points"));
m_desc["manual_editing"] = _(L("Manual editing"));
m_desc["clipping_of_view"] = _(L("Clipping of view"))+ ": ";
m_desc["reset_direction"] = _(L("Reset direction"));
return true;
}
void GLGizmoFdmSupports::set_fdm_support_data(ModelObject* model_object, const Selection& selection)
{
if (! model_object || selection.is_empty()) {
m_model_object = nullptr;
return;
}
if (m_model_object != model_object || m_model_object_id != model_object->id())
m_model_object = model_object;
m_active_instance = selection.get_instance_idx();
if (model_object && selection.is_from_single_instance())
{
// Cache the bb - it's needed for dealing with the clipping plane quite often
// It could be done inside update_mesh but one has to account for scaling of the instance.
//FIXME calling ModelObject::instance_bounding_box() is expensive!
m_active_instance_bb_radius = m_model_object->instance_bounding_box(m_active_instance).radius();
if (is_mesh_update_necessary())
update_mesh();
if (m_state == On) {
m_parent.toggle_model_objects_visibility(false);
m_parent.toggle_model_objects_visibility(true, m_model_object, m_active_instance);
}
else
m_parent.toggle_model_objects_visibility(true, nullptr, -1);
}
}
void GLGizmoFdmSupports::on_render() const
{
const Selection& selection = m_parent.get_selection();
// If current m_model_object does not match selection, ask GLCanvas3D to turn us off
if (m_state == On
&& (m_model_object != selection.get_model()->objects[selection.get_object_idx()]
|| m_active_instance != selection.get_instance_idx()
|| m_model_object_id != m_model_object->id())) {
m_parent.post_event(SimpleEvent(EVT_GLCANVAS_RESETGIZMOS));
return;
}
if (m_meshes.empty())
const_cast<GLGizmoFdmSupports*>(this)->update_mesh();
glsafe(::glEnable(GL_BLEND));
glsafe(::glEnable(GL_DEPTH_TEST));
render_triangles(selection);
render_clipping_plane(selection);
render_cursor_circle();
glsafe(::glDisable(GL_BLEND));
}
void GLGizmoFdmSupports::render_triangles(const Selection& selection) const
{
// if (m_meshes.empty())
// return;
for (size_t mesh_id=0; mesh_id<m_meshes.size(); ++mesh_id) {
const Transform3d trafo_matrix =
m_model_object->instances[selection.get_instance_idx()]->get_transformation().get_matrix() *
m_model_object->volumes[mesh_id]->get_matrix();
const TriangleMesh* mesh = m_meshes[mesh_id];
::glColor3f(0.0f, 0.37f, 1.0f);
for (size_t facet_idx=0; facet_idx<m_selected_facets[mesh_id].size(); ++facet_idx) {
if (! m_selected_facets[mesh_id][facet_idx])
continue;
stl_normal normal = 0.01f * MeshRaycaster::get_triangle_normal(mesh->its, facet_idx);
::glPushMatrix();
::glTranslatef(normal(0), normal(1), normal(2));
::glMultMatrixd(trafo_matrix.data());
::glBegin(GL_TRIANGLES);
::glVertex3f(mesh->its.vertices[mesh->its.indices[facet_idx](0)](0), mesh->its.vertices[mesh->its.indices[facet_idx](0)](1), mesh->its.vertices[mesh->its.indices[facet_idx](0)](2));
::glVertex3f(mesh->its.vertices[mesh->its.indices[facet_idx](1)](0), mesh->its.vertices[mesh->its.indices[facet_idx](1)](1), mesh->its.vertices[mesh->its.indices[facet_idx](1)](2));
::glVertex3f(mesh->its.vertices[mesh->its.indices[facet_idx](2)](0), mesh->its.vertices[mesh->its.indices[facet_idx](2)](1), mesh->its.vertices[mesh->its.indices[facet_idx](2)](2));
::glEnd();
::glPopMatrix();
}
}
}
void GLGizmoFdmSupports::render_clipping_plane(const Selection& selection) const
{
// if (m_clipping_plane_distance == 0.f)
// return;
// // Get transformation of the instance
// const GLVolume* vol = selection.get_volume(*selection.get_volume_idxs().begin());
// Geometry::Transformation trafo = vol->get_instance_transformation();
// // Now initialize the TMS for the object, perform the cut and save the result.
// if (! m_object_clipper) {
// m_object_clipper.reset(new MeshClipper);
// m_object_clipper->set_mesh(*m_mesh);
// }
// m_object_clipper->set_plane(*m_clipping_plane);
// m_object_clipper->set_transformation(trafo);
// // At this point we have the triangulated cuts for both the object and supports - let's render.
// if (! m_object_clipper->get_triangles().empty()) {
// ::glPushMatrix();
// ::glColor3f(1.0f, 0.37f, 0.0f);
// ::glBegin(GL_TRIANGLES);
// for (const Vec3f& point : m_object_clipper->get_triangles())
// ::glVertex3f(point(0), point(1), point(2));
// ::glEnd();
// ::glPopMatrix();
// }
}
void GLGizmoFdmSupports::render_cursor_circle() const
{
const Camera& camera = m_parent.get_camera();
float zoom = (float)camera.get_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
Size cnv_size = m_parent.get_canvas_size();
float cnv_half_width = 0.5f * (float)cnv_size.get_width();
float cnv_half_height = 0.5f * (float)cnv_size.get_height();
if ((cnv_half_width == 0.0f) || (cnv_half_height == 0.0f))
return;
Vec2d mouse_pos(m_parent.get_local_mouse_position()(0), m_parent.get_local_mouse_position()(1));
Vec2d center(mouse_pos(0) - cnv_half_width, cnv_half_height - mouse_pos(1));
center = center * inv_zoom;
glsafe(::glLineWidth(1.5f));
float color[3];
color[0] = 0.f;
color[1] = 1.f;
color[2] = 0.3f;
glsafe(::glColor3fv(color));
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
// ensure that the circle is renderered inside the frustrum
glsafe(::glTranslated(0.0, 0.0, -(camera.get_near_z() + 0.5)));
// ensure that the overlay fits the frustrum near z plane
double gui_scale = camera.get_gui_scale();
glsafe(::glScaled(gui_scale, gui_scale, 1.0));
glsafe(::glPushAttrib(GL_ENABLE_BIT));
glsafe(::glLineStipple(4, 0xAAAA));
glsafe(::glEnable(GL_LINE_STIPPLE));
::glBegin(GL_LINE_LOOP);
for (double angle=0; angle<2*M_PI; angle+=M_PI/20.)
::glVertex2f(GLfloat(center.x()+m_cursor_radius*cos(angle)), GLfloat(center.y()+m_cursor_radius*sin(angle)));
glsafe(::glEnd());
glsafe(::glPopAttrib());
glsafe(::glPopMatrix());
}
void GLGizmoFdmSupports::on_render_for_picking() const
{
}
bool GLGizmoFdmSupports::is_mesh_update_necessary() const
{
std::vector<ObjectID> volumes_ids;
for (const ModelVolume* vol : m_model_object->volumes)
volumes_ids.push_back(vol->id());
return ((m_state == On) && (m_model_object != nullptr) && !m_model_object->instances.empty())
&& (m_model_object->id() != m_model_object_id || m_volumes_ids != volumes_ids);
}
void GLGizmoFdmSupports::update_mesh()
{
if (! m_model_object)
return;
wxBusyCursor wait;
size_t num_of_volumes = m_model_object->volumes.size();
m_meshes.clear();
m_selected_facets.resize(num_of_volumes);
m_neighbors.resize(num_of_volumes);
m_meshes_raycaster.clear();
for (size_t volume_id=0; volume_id<num_of_volumes; ++volume_id) {
// This mesh does not account for the possible Z up SLA offset.
const TriangleMesh* mesh = &m_model_object->volumes[volume_id]->mesh();
m_meshes.push_back(mesh);
m_selected_facets[volume_id].assign(mesh->its.indices.size(), false);
m_neighbors[volume_id].resize(3 * mesh->its.indices.size());
// Prepare vector of vertex_index - facet_index pairs to quickly find adjacent facets
for (size_t i=0; i<mesh->its.indices.size(); ++i) {
const stl_triangle_vertex_indices& ind = mesh->its.indices[i];
m_neighbors[volume_id][3*i] = std::make_pair(ind(0), i);
m_neighbors[volume_id][3*i+1] = std::make_pair(ind(1), i);
m_neighbors[volume_id][3*i+2] = std::make_pair(ind(2), i);
}
std::sort(m_neighbors[volume_id].begin(), m_neighbors[volume_id].end());
// Recalculate raycaster.
m_meshes_raycaster.emplace_back(new MeshRaycaster(*mesh));
}
m_model_object_id = m_model_object->id();
}
bool operator<(const GLGizmoFdmSupports::NeighborData& a, const GLGizmoFdmSupports::NeighborData& b) {
return a.first < b.first;
}
// Following function is called from GLCanvas3D to inform the gizmo about a mouse/keyboard event.
// The gizmo has an opportunity to react - if it does, it should return true so that the Canvas3D is
// aware that the event was reacted to and stops trying to make different sense of it. If the gizmo
// concludes that the event was not intended for it, it should return false.
bool GLGizmoFdmSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mouse_position, bool shift_down, bool alt_down, bool control_down)
{
if (action == SLAGizmoEventType::MouseWheelUp && control_down) {
m_clipping_plane_distance = std::min(1.f, m_clipping_plane_distance + 0.01f);
update_clipping_plane(true);
return true;
}
if (action == SLAGizmoEventType::MouseWheelDown && control_down) {
m_clipping_plane_distance = std::max(0.f, m_clipping_plane_distance - 0.01f);
update_clipping_plane(true);
return true;
}
if (action == SLAGizmoEventType::ResetClippingPlane) {
update_clipping_plane();
return true;
}
if (action == SLAGizmoEventType::LeftDown || (action == SLAGizmoEventType::Dragging && m_wait_for_up_event)) {
2020-03-09 09:02:06 +00:00
bool select = ! shift_down;
const Camera& camera = m_parent.get_camera();
const Selection& selection = m_parent.get_selection();
const Transform3d& instance_trafo = m_model_object->instances[selection.get_instance_idx()]->get_transformation().get_matrix();
// Precalculate transformations of individual meshes
std::vector<Transform3d> trafo_matrices;
for (const ModelVolume* mv : m_model_object->volumes)
trafo_matrices.push_back(instance_trafo * mv->get_matrix());
std::vector<std::vector<std::pair<Vec3f, size_t>>> hit_positions_and_facet_ids(m_meshes.size());
bool some_mesh_was_hit = false;
// Cast a ray on all meshes, pick the closest hit and save it for the respective mesh
Vec3f normal = Vec3f::Zero();
Vec3f hit = Vec3f::Zero();
size_t facet = 0;
2020-03-09 09:02:06 +00:00
Vec3f closest_hit = Vec3f::Zero();
double closest_hit_squared_distance = std::numeric_limits<double>::max();
size_t closest_facet = 0;
size_t closest_hit_mesh_id = size_t(-1);
for (size_t mesh_id=0; mesh_id<m_meshes.size(); ++mesh_id) {
if (m_meshes_raycaster[mesh_id]->unproject_on_mesh(
mouse_position,
trafo_matrices[mesh_id],
camera,
hit,
normal,
m_clipping_plane.get(),
&facet))
{
// Is this hit the closest to the camera so far?
double hit_squared_distance = (camera.get_position()-trafo_matrices[mesh_id]*hit.cast<double>()).squaredNorm();
if (hit_squared_distance < closest_hit_squared_distance) {
closest_hit_squared_distance = hit_squared_distance;
closest_facet = facet;
closest_hit_mesh_id = mesh_id;
closest_hit = hit;
}
}
}
// We now know where the ray hit, let's save it and cast another ray
if (closest_hit_mesh_id != size_t(-1)) // only if there is at least one hit
hit_positions_and_facet_ids[closest_hit_mesh_id].emplace_back(closest_hit, closest_facet);
2020-03-09 09:02:06 +00:00
// Now propagate the hits
for (size_t mesh_id=0; mesh_id<m_meshes.size(); ++mesh_id) {
// For all hits on this mesh...
for (const std::pair<Vec3f, size_t>& hit_and_facet : hit_positions_and_facet_ids[mesh_id]) {
some_mesh_was_hit = true;
const TriangleMesh* mesh = m_meshes[mesh_id];
std::vector<NeighborData>& neighbors = m_neighbors[mesh_id];
// Calculate direction from camera to the hit (in mesh coords):
2020-03-09 09:02:06 +00:00
const Transform3d& trafo_matrix = trafo_matrices[mesh_id];
Vec3f dir = ((trafo_matrix.inverse() * camera.get_position()).cast<float>() - hit_and_facet.first).normalized();
// Calculate how far can a point be from the line (in mesh coords).
// FIXME: This should account for (possibly non-uniform) scaling of the mesh.
float limit = pow(m_cursor_radius, 2.f);
2020-03-09 09:02:06 +00:00
// A lambda to calculate distance from the centerline:
auto squared_distance_from_line = [&hit_and_facet, &dir](const Vec3f point) -> float {
Vec3f diff = hit_and_facet.first - point;
return (diff - diff.dot(dir) * dir).squaredNorm();
};
// A lambda to determine whether this facet is potentionally visible (still can be obscured)
auto faces_camera = [&dir, this](const size_t& mesh_id, const size_t& facet) -> bool {
return (m_meshes[mesh_id]->stl.facet_start[facet].normal.dot(dir) > 0.);
};
// Now start with the facet the pointer points to and check all adjacent facets. neighbors vector stores
// pairs of vertex_idx - facet_idx and is sorted with respect to the former. Neighboring facet index can be
// quickly found by finding a vertex in the list and read the respective facet ids.
2020-03-09 09:02:06 +00:00
std::vector<size_t> facets_to_select{hit_and_facet.second};
NeighborData vertex = std::make_pair(0, 0);
std::vector<bool> visited(m_selected_facets[mesh_id].size(), false); // keep track of facets we already processed
size_t facet_idx = 0; // index into facets_to_select
auto it = neighbors.end();
while (facet_idx < facets_to_select.size()) {
size_t facet = facets_to_select[facet_idx];
if (! visited[facet]) {
// check all three vertices and in case they're close enough, find the remaining facets
// and add them to the list to be proccessed later
for (size_t i=0; i<3; ++i) {
vertex.first = mesh->its.indices[facet](i); // vertex index
float dist = squared_distance_from_line(mesh->its.vertices[vertex.first]);
if (dist < limit) {
it = std::lower_bound(neighbors.begin(), neighbors.end(), vertex);
while (it != neighbors.end() && it->first == vertex.first) {
if (it->second != facet && faces_camera(mesh_id, it->second))
facets_to_select.push_back(it->second);
++it;
}
}
}
visited[facet] = true;
}
++facet_idx;
}
// Now just select all facets that passed
for (size_t next_facet : facets_to_select)
m_selected_facets[mesh_id][next_facet] = select;
}
}
2020-03-09 09:02:06 +00:00
if (some_mesh_was_hit)
{
m_wait_for_up_event = true;
m_parent.set_as_dirty();
return true;
}
if (action == SLAGizmoEventType::Dragging && m_wait_for_up_event)
return true;
}
if (action == SLAGizmoEventType::LeftUp && m_wait_for_up_event) {
m_wait_for_up_event = false;
return true;
}
return false;
}
ClippingPlane GLGizmoFdmSupports::get_fdm_clipping_plane() const
{
if (!m_model_object || m_state == Off || m_clipping_plane_distance == 0.f)
return ClippingPlane::ClipsNothing();
else
return ClippingPlane(-m_clipping_plane->get_normal(), m_clipping_plane->get_data()[3]);
}
void GLGizmoFdmSupports::on_render_input_window(float x, float y, float bottom_limit)
{
if (!m_model_object)
return;
const float approx_height = m_imgui->scaled(18.0f);
y = std::min(y, bottom_limit - approx_height);
m_imgui->set_next_window_pos(x, y, ImGuiCond_Always);
m_imgui->set_next_window_bg_alpha(0.5f);
m_imgui->begin(on_get_name(), ImGuiWindowFlags_NoMove | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoCollapse);
// First calculate width of all the texts that are could possibly be shown. We will decide set the dialog width based on that:
const float settings_sliders_left = std::max(m_imgui->calc_text_size(m_desc.at("minimal_distance")).x, m_imgui->calc_text_size(m_desc.at("points_density")).x) + m_imgui->scaled(1.f);
const float clipping_slider_left = std::max(m_imgui->calc_text_size(m_desc.at("clipping_of_view")).x, m_imgui->calc_text_size(m_desc.at("reset_direction")).x) + m_imgui->scaled(1.5f);
const float diameter_slider_left = m_imgui->calc_text_size(m_desc.at("head_diameter")).x + m_imgui->scaled(1.f);
const float minimal_slider_width = m_imgui->scaled(4.f);
const float buttons_width_approx = m_imgui->calc_text_size(m_desc.at("apply_changes")).x + m_imgui->calc_text_size(m_desc.at("discard_changes")).x + m_imgui->scaled(1.5f);
const float lock_supports_width_approx = m_imgui->calc_text_size(m_desc.at("lock_supports")).x + m_imgui->scaled(2.f);
float window_width = minimal_slider_width + std::max(std::max(settings_sliders_left, clipping_slider_left), diameter_slider_left);
window_width = std::max(std::max(window_width, buttons_width_approx), lock_supports_width_approx);
// Following is rendered in both editing and non-editing mode:
m_imgui->text("");
if (m_clipping_plane_distance == 0.f)
m_imgui->text(m_desc.at("clipping_of_view"));
else {
if (m_imgui->button(m_desc.at("reset_direction"))) {
wxGetApp().CallAfter([this](){
update_clipping_plane();
});
}
}
ImGui::SameLine(clipping_slider_left);
ImGui::PushItemWidth(window_width - clipping_slider_left);
if (ImGui::SliderFloat(" ", &m_clipping_plane_distance, 0.f, 1.f, "%.2f"))
update_clipping_plane(true);
ImGui::SliderFloat(" ", &m_cursor_radius, 0.f, 8.f, "%.2f");
m_imgui->end();
}
bool GLGizmoFdmSupports::on_is_activable() const
{
const Selection& selection = m_parent.get_selection();
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptFFF
|| !selection.is_from_single_instance())
return false;
// Check that none of the selected volumes is outside. Only SLA auxiliaries (supports) are allowed outside.
const Selection::IndicesList& list = selection.get_volume_idxs();
for (const auto& idx : list)
if (selection.get_volume(idx)->is_outside)
return false;
return true;
}
bool GLGizmoFdmSupports::on_is_selectable() const
{
return (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF );
}
std::string GLGizmoFdmSupports::on_get_name() const
{
return (_(L("FDM Support Editing")) + " [L]").ToUTF8().data();
}
void GLGizmoFdmSupports::on_set_state()
{
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
return;
// m_model_object pointer can be invalid (for instance because of undo/redo action),
// we should recover it from the object id
m_model_object = nullptr;
for (const auto mo : wxGetApp().model().objects) {
if (mo->id() == m_model_object_id) {
m_model_object = mo;
break;
}
}
if (m_state == m_old_state)
return;
if (m_state == On && m_old_state != On) { // the gizmo was just turned on
Plater::TakeSnapshot snapshot(wxGetApp().plater(), _(L("FDM gizmo turned on")));
if (is_mesh_update_necessary())
update_mesh();
// we'll now reload support points:
if (m_model_object)
;// !!!! reload_cache();
m_parent.toggle_model_objects_visibility(false);
if (m_model_object)
m_parent.toggle_model_objects_visibility(true, m_model_object, m_active_instance);
}
if (m_state == Off && m_old_state != Off) { // the gizmo was just turned Off
// we are actually shutting down
Plater::TakeSnapshot snapshot(wxGetApp().plater(), _(L("FDM gizmo turned off")));
m_parent.toggle_model_objects_visibility(true);
m_clipping_plane_distance = 0.f;
// Release clippers and the AABB raycaster.
m_meshes_clipper.clear();
m_meshes_raycaster.clear();
}
m_old_state = m_state;
}
void GLGizmoFdmSupports::on_start_dragging()
{
}
void GLGizmoFdmSupports::on_stop_dragging()
{
}
void GLGizmoFdmSupports::on_load(cereal::BinaryInputArchive& ar)
{
}
void GLGizmoFdmSupports::on_save(cereal::BinaryOutputArchive& ar) const
{
}
void GLGizmoFdmSupports::update_clipping_plane(bool keep_normal) const
{
Vec3d normal = (keep_normal && m_clipping_plane->get_normal() != Vec3d::Zero() ?
m_clipping_plane->get_normal() : -m_parent.get_camera().get_dir_forward());
const Vec3d& center = m_model_object->instances[m_active_instance]->get_offset();
float dist = normal.dot(center);
*m_clipping_plane = ClippingPlane(normal, (dist - (-m_active_instance_bb_radius) - m_clipping_plane_distance * 2*m_active_instance_bb_radius));
m_parent.set_as_dirty();
}
} // namespace GUI
} // namespace Slic3r