313 lines
11 KiB
C++
313 lines
11 KiB
C++
#include "MeshUtils.hpp"
|
|
|
|
#include "libslic3r/Tesselate.hpp"
|
|
#include "libslic3r/TriangleMesh.hpp"
|
|
#include "libslic3r/TriangleMeshSlicer.hpp"
|
|
#include "libslic3r/ClipperUtils.hpp"
|
|
#include "libslic3r/Model.hpp"
|
|
|
|
#include "slic3r/GUI/Camera.hpp"
|
|
|
|
#include <GL/glew.h>
|
|
|
|
#include <igl/unproject.h>
|
|
|
|
|
|
namespace Slic3r {
|
|
namespace GUI {
|
|
|
|
void MeshClipper::set_plane(const ClippingPlane& plane)
|
|
{
|
|
if (m_plane != plane) {
|
|
m_plane = plane;
|
|
m_triangles_valid = false;
|
|
}
|
|
}
|
|
|
|
|
|
void MeshClipper::set_limiting_plane(const ClippingPlane& plane)
|
|
{
|
|
if (m_limiting_plane != plane) {
|
|
m_limiting_plane = plane;
|
|
m_triangles_valid = false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::set_mesh(const TriangleMesh& mesh)
|
|
{
|
|
if (m_mesh != &mesh) {
|
|
m_mesh = &mesh;
|
|
m_triangles_valid = false;
|
|
m_triangles2d.resize(0);
|
|
}
|
|
}
|
|
|
|
void MeshClipper::set_negative_mesh(const TriangleMesh& mesh)
|
|
{
|
|
if (m_negative_mesh != &mesh) {
|
|
m_negative_mesh = &mesh;
|
|
m_triangles_valid = false;
|
|
m_triangles2d.resize(0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::set_transformation(const Geometry::Transformation& trafo)
|
|
{
|
|
if (! m_trafo.get_matrix().isApprox(trafo.get_matrix())) {
|
|
m_trafo = trafo;
|
|
m_triangles_valid = false;
|
|
m_triangles2d.resize(0);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::render_cut()
|
|
{
|
|
if (! m_triangles_valid)
|
|
recalculate_triangles();
|
|
|
|
if (m_vertex_array.has_VBOs())
|
|
m_vertex_array.render();
|
|
}
|
|
|
|
|
|
|
|
void MeshClipper::recalculate_triangles()
|
|
{
|
|
const Transform3f& instance_matrix_no_translation_no_scaling = m_trafo.get_matrix(true,false,true).cast<float>();
|
|
const Vec3f& scaling = m_trafo.get_scaling_factor().cast<float>();
|
|
// Calculate clipping plane normal in mesh coordinates.
|
|
Vec3f up_noscale = instance_matrix_no_translation_no_scaling.inverse() * m_plane.get_normal().cast<float>();
|
|
Vec3d up (up_noscale(0)*scaling(0), up_noscale(1)*scaling(1), up_noscale(2)*scaling(2));
|
|
// Calculate distance from mesh origin to the clipping plane (in mesh coordinates).
|
|
float height_mesh = m_plane.distance(m_trafo.get_offset()) * (up_noscale.norm()/up.norm());
|
|
|
|
// Now do the cutting
|
|
MeshSlicingParams slicing_params;
|
|
slicing_params.trafo.rotate(Eigen::Quaternion<double, Eigen::DontAlign>::FromTwoVectors(up, Vec3d::UnitZ()));
|
|
|
|
ExPolygons expolys = union_ex(slice_mesh(m_mesh->its, height_mesh, slicing_params));
|
|
|
|
if (m_negative_mesh && !m_negative_mesh->empty()) {
|
|
ExPolygons neg_expolys = union_ex(slice_mesh(m_negative_mesh->its, height_mesh, slicing_params));
|
|
expolys = diff_ex(expolys, neg_expolys);
|
|
}
|
|
|
|
// Triangulate and rotate the cut into world coords:
|
|
Eigen::Quaterniond q;
|
|
q.setFromTwoVectors(Vec3d::UnitZ(), up);
|
|
Transform3d tr = Transform3d::Identity();
|
|
tr.rotate(q);
|
|
tr = m_trafo.get_matrix() * tr;
|
|
|
|
if (m_limiting_plane != ClippingPlane::ClipsNothing())
|
|
{
|
|
// Now remove whatever ended up below the limiting plane (e.g. sinking objects).
|
|
// First transform the limiting plane from world to mesh coords.
|
|
// Note that inverse of tr transforms the plane from world to horizontal.
|
|
Vec3d normal_old = m_limiting_plane.get_normal().normalized();
|
|
Vec3d normal_new = (tr.matrix().block<3,3>(0,0).transpose() * normal_old).normalized();
|
|
|
|
// normal_new should now be the plane normal in mesh coords. To find the offset,
|
|
// transform a point and set offset so it belongs to the transformed plane.
|
|
Vec3d pt = Vec3d::Zero();
|
|
double plane_offset = m_limiting_plane.get_data()[3];
|
|
if (std::abs(normal_old.z()) > 0.5) // normal is normalized, at least one of the coords if larger than sqrt(3)/3 = 0.57
|
|
pt.z() = - plane_offset / normal_old.z();
|
|
else if (std::abs(normal_old.y()) > 0.5)
|
|
pt.y() = - plane_offset / normal_old.y();
|
|
else
|
|
pt.x() = - plane_offset / normal_old.x();
|
|
pt = tr.inverse() * pt;
|
|
double offset = -(normal_new.dot(pt));
|
|
|
|
if (std::abs(normal_old.dot(m_plane.get_normal().normalized())) > 0.99) {
|
|
// The cuts are parallel, show all or nothing.
|
|
if (offset < height_mesh)
|
|
expolys.clear();
|
|
} else {
|
|
// The cut is a horizontal plane defined by z=height_mesh.
|
|
// ax+by+e=0 is the line of intersection with the limiting plane.
|
|
// Normalized so a^2 + b^2 = 1.
|
|
double len = std::hypot(normal_new.x(), normal_new.y());
|
|
if (len == 0.)
|
|
return;
|
|
double a = normal_new.x() / len;
|
|
double b = normal_new.y() / len;
|
|
double e = (normal_new.z() * height_mesh + offset) / len;
|
|
if (b == 0.)
|
|
return;
|
|
|
|
// We need a half-plane to limit the cut. Get angle of the intersecting line.
|
|
double angle = std::atan(-a/b);
|
|
if (b > 0) // select correct half-plane
|
|
angle += M_PI;
|
|
|
|
// We'll take a big rectangle above x-axis and rotate and translate
|
|
// it so it lies on our line. This will be the figure to subtract
|
|
// from the cut. The coordinates must not overflow after the transform,
|
|
// make the rectangle a bit smaller.
|
|
coord_t size = (std::numeric_limits<coord_t>::max() - scale_(std::max(std::abs(e*a), std::abs(e*b)))) / 4;
|
|
Polygons ep {Polygon({Point(-size, 0), Point(size, 0), Point(size, 2*size), Point(-size, 2*size)})};
|
|
ep.front().rotate(angle);
|
|
ep.front().translate(scale_(-e * a), scale_(-e * b));
|
|
expolys = diff_ex(expolys, ep);
|
|
}
|
|
}
|
|
|
|
m_triangles2d = triangulate_expolygons_2f(expolys, m_trafo.get_matrix().matrix().determinant() < 0.);
|
|
|
|
tr.pretranslate(0.001 * m_plane.get_normal().normalized()); // to avoid z-fighting
|
|
|
|
m_vertex_array.release_geometry();
|
|
for (auto it=m_triangles2d.cbegin(); it != m_triangles2d.cend(); it=it+3) {
|
|
m_vertex_array.push_geometry(tr * Vec3d((*(it+0))(0), (*(it+0))(1), height_mesh), up);
|
|
m_vertex_array.push_geometry(tr * Vec3d((*(it+1))(0), (*(it+1))(1), height_mesh), up);
|
|
m_vertex_array.push_geometry(tr * Vec3d((*(it+2))(0), (*(it+2))(1), height_mesh), up);
|
|
size_t idx = it - m_triangles2d.cbegin();
|
|
m_vertex_array.push_triangle(idx, idx+1, idx+2);
|
|
}
|
|
m_vertex_array.finalize_geometry(true);
|
|
|
|
m_triangles_valid = true;
|
|
}
|
|
|
|
|
|
Vec3f MeshRaycaster::get_triangle_normal(size_t facet_idx) const
|
|
{
|
|
return m_normals[facet_idx];
|
|
}
|
|
|
|
void MeshRaycaster::line_from_mouse_pos(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
|
|
Vec3d& point, Vec3d& direction) const
|
|
{
|
|
Matrix4d modelview = camera.get_view_matrix().matrix();
|
|
Matrix4d projection= camera.get_projection_matrix().matrix();
|
|
Vec4i viewport(camera.get_viewport().data());
|
|
|
|
Vec3d pt1;
|
|
Vec3d pt2;
|
|
igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 0.),
|
|
modelview, projection, viewport, pt1);
|
|
igl::unproject(Vec3d(mouse_pos(0), viewport[3] - mouse_pos(1), 1.),
|
|
modelview, projection, viewport, pt2);
|
|
|
|
Transform3d inv = trafo.inverse();
|
|
pt1 = inv * pt1;
|
|
pt2 = inv * pt2;
|
|
|
|
point = pt1;
|
|
direction = pt2-pt1;
|
|
}
|
|
|
|
|
|
bool MeshRaycaster::unproject_on_mesh(const Vec2d& mouse_pos, const Transform3d& trafo, const Camera& camera,
|
|
Vec3f& position, Vec3f& normal, const ClippingPlane* clipping_plane,
|
|
size_t* facet_idx) const
|
|
{
|
|
Vec3d point;
|
|
Vec3d direction;
|
|
line_from_mouse_pos(mouse_pos, trafo, camera, point, direction);
|
|
|
|
std::vector<sla::IndexedMesh::hit_result> hits = m_emesh.query_ray_hits(point, direction);
|
|
|
|
if (hits.empty())
|
|
return false; // no intersection found
|
|
|
|
unsigned i = 0;
|
|
|
|
// Remove points that are obscured or cut by the clipping plane.
|
|
// Also, remove anything below the bed (sinking objects).
|
|
for (i=0; i<hits.size(); ++i) {
|
|
Vec3d transformed_hit = trafo * hits[i].position();
|
|
if (transformed_hit.z() >= SINKING_Z_THRESHOLD &&
|
|
(! clipping_plane || ! clipping_plane->is_point_clipped(transformed_hit)))
|
|
break;
|
|
}
|
|
|
|
if (i==hits.size() || (hits.size()-i) % 2 != 0) {
|
|
// All hits are either clipped, or there is an odd number of unclipped
|
|
// hits - meaning the nearest must be from inside the mesh.
|
|
return false;
|
|
}
|
|
|
|
// Now stuff the points in the provided vector and calculate normals if asked about them:
|
|
position = hits[i].position().cast<float>();
|
|
normal = hits[i].normal().cast<float>();
|
|
|
|
if (facet_idx)
|
|
*facet_idx = hits[i].face();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
std::vector<unsigned> MeshRaycaster::get_unobscured_idxs(const Geometry::Transformation& trafo, const Camera& camera, const std::vector<Vec3f>& points,
|
|
const ClippingPlane* clipping_plane) const
|
|
{
|
|
std::vector<unsigned> out;
|
|
|
|
const Transform3d& instance_matrix_no_translation_no_scaling = trafo.get_matrix(true,false,true);
|
|
Vec3d direction_to_camera = -camera.get_dir_forward();
|
|
Vec3d direction_to_camera_mesh = (instance_matrix_no_translation_no_scaling.inverse() * direction_to_camera).normalized().eval();
|
|
direction_to_camera_mesh = direction_to_camera_mesh.cwiseProduct(trafo.get_scaling_factor());
|
|
const Transform3d inverse_trafo = trafo.get_matrix().inverse();
|
|
|
|
for (size_t i=0; i<points.size(); ++i) {
|
|
const Vec3f& pt = points[i];
|
|
if (clipping_plane && clipping_plane->is_point_clipped(pt.cast<double>()))
|
|
continue;
|
|
|
|
bool is_obscured = false;
|
|
// Cast a ray in the direction of the camera and look for intersection with the mesh:
|
|
std::vector<sla::IndexedMesh::hit_result> hits;
|
|
// Offset the start of the ray by EPSILON to account for numerical inaccuracies.
|
|
hits = m_emesh.query_ray_hits((inverse_trafo * pt.cast<double>() + direction_to_camera_mesh * EPSILON),
|
|
direction_to_camera_mesh);
|
|
|
|
if (! hits.empty()) {
|
|
// If the closest hit facet normal points in the same direction as the ray,
|
|
// we are looking through the mesh and should therefore discard the point:
|
|
if (hits.front().normal().dot(direction_to_camera_mesh.cast<double>()) > 0)
|
|
is_obscured = true;
|
|
|
|
// Eradicate all hits that the caller wants to ignore
|
|
for (unsigned j=0; j<hits.size(); ++j) {
|
|
if (clipping_plane && clipping_plane->is_point_clipped(trafo.get_matrix() * hits[j].position())) {
|
|
hits.erase(hits.begin()+j);
|
|
--j;
|
|
}
|
|
}
|
|
|
|
// FIXME: the intersection could in theory be behind the camera, but as of now we only have camera direction.
|
|
// Also, the threshold is in mesh coordinates, not in actual dimensions.
|
|
if (! hits.empty())
|
|
is_obscured = true;
|
|
}
|
|
if (! is_obscured)
|
|
out.push_back(i);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
Vec3f MeshRaycaster::get_closest_point(const Vec3f& point, Vec3f* normal) const
|
|
{
|
|
int idx = 0;
|
|
Vec3d closest_point;
|
|
m_emesh.squared_distance(point.cast<double>(), idx, closest_point);
|
|
if (normal)
|
|
*normal = m_normals[idx];
|
|
|
|
return closest_point.cast<float>();
|
|
}
|
|
|
|
|
|
|
|
} // namespace GUI
|
|
} // namespace Slic3r
|