orcaslicer/src/libslic3r/Fill/FillRectilinear3.cpp
2019-06-25 16:04:29 +02:00

1642 lines
83 KiB
C++

#include <stdlib.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <boost/static_assert.hpp>
#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Geometry.hpp"
#include "../Surface.hpp"
#include "../Int128.hpp"
#include "FillRectilinear3.hpp"
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#define DEBUG
#define _DEBUG
#include "../SVG.hpp"
#endif
#include <cassert>
namespace Slic3r {
namespace FillRectilinear3_Internal {
// A container maintaining the source expolygon with its inner offsetted polygon.
// The source expolygon is offsetted twice:
// 1) A tiny offset is used to get a contour, to which the open hatching lines will be extended.
// 2) A larger offset is used to get a contor, along which the individual hatching lines will be connected.
struct ExPolygonWithOffset
{
public:
ExPolygonWithOffset(
const ExPolygon &expolygon,
float aoffset1,
float aoffset2)
{
// Copy and rotate the source polygons.
polygons_src = expolygon;
double mitterLimit = 3.;
// for the infill pattern, don't cut the corners.
// default miterLimt = 3
//double mitterLimit = 10.;
assert(aoffset1 < 0);
assert(aoffset2 < 0);
assert(aoffset2 < aoffset1);
// bool sticks_removed = remove_sticks(polygons_src);
// if (sticks_removed) printf("Sticks removed!\n");
polygons_outer = offset(polygons_src, aoffset1,
ClipperLib::jtMiter,
mitterLimit);
polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
ClipperLib::jtMiter,
mitterLimit);
// Filter out contours with zero area or small area, contours with 2 points only.
const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
remove_small(polygons_outer, min_area_threshold);
remove_small(polygons_inner, min_area_threshold);
remove_sticks(polygons_outer);
remove_sticks(polygons_inner);
n_contours_outer = polygons_outer.size();
n_contours_inner = polygons_inner.size();
n_contours = n_contours_outer + n_contours_inner;
polygons_ccw.assign(n_contours, false);
for (size_t i = 0; i < n_contours; ++ i) {
contour(i).remove_duplicate_points();
assert(! contour(i).has_duplicate_points());
polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
}
}
// Any contour with offset1
bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
// Any contour with offset2
bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
const Polygon& contour(size_t idx) const
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
Polygon& contour(size_t idx)
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx] != 0; }
BoundingBox bounding_box_src() const
{ return get_extents(polygons_src); }
BoundingBox bounding_box_outer() const
{ return get_extents(polygons_outer); }
BoundingBox bounding_box_inner() const
{ return get_extents(polygons_inner); }
#ifdef SLIC3R_DEBUG
void export_to_svg(Slic3r::SVG &svg) const {
svg.draw_outline(polygons_src, "black");
svg.draw_outline(polygons_outer, "green");
svg.draw_outline(polygons_inner, "brown");
}
#endif /* SLIC3R_DEBUG */
ExPolygon polygons_src;
Polygons polygons_outer;
Polygons polygons_inner;
size_t n_contours_outer;
size_t n_contours_inner;
size_t n_contours;
protected:
// For each polygon of polygons_inner, remember its orientation.
std::vector<unsigned char> polygons_ccw;
};
class SegmentedIntersectionLine;
// Intersection point of a vertical line with a polygon segment.
class SegmentIntersection
{
public:
SegmentIntersection() :
line(nullptr),
expoly_with_offset(nullptr),
iContour(0),
iSegment(0),
type(UNKNOWN),
consumed_vertical_up(false),
consumed_perimeter_right(false)
{}
// Parent object owning this intersection point.
const SegmentedIntersectionLine *line;
// Container with the source expolygon and its shrank copies, to be intersected by the line.
const ExPolygonWithOffset *expoly_with_offset;
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
size_t iContour;
// Index of a segment in iContour, with which this vertical line intersects.
size_t iSegment;
// Kind of intersection. With the original contour, or with the inner offestted contour?
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
enum SegmentIntersectionType {
OUTER_LOW = 0,
OUTER_HIGH = 1,
INNER_LOW = 2,
INNER_HIGH = 3,
UNKNOWN = -1
};
SegmentIntersectionType type;
// For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
// If INNER_LOW is connected to INNER_HIGH or vice versa,
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
// Calculate a position of this intersection point. The position does not need to be necessary exact.
Point pos() const;
// Returns 0, if this and other segments intersect at the hatching line.
// Returns -1, if this intersection is below the other intersection on the hatching line.
// Returns +1 otherwise.
int ordering_along_line(const SegmentIntersection &other) const;
// Compare two y intersection points given by rational numbers.
bool operator< (const SegmentIntersection &other) const;
// { return this->ordering_along_line(other) == -1; }
bool operator==(const SegmentIntersection &other) const { return this->ordering_along_line(other) == 0; }
//FIXME legacy code, suporting the old graph traversal algorithm. Please remove.
// Was this segment along the y axis consumed?
// Up means up along the vertical segment.
bool consumed_vertical_up;
// Was a segment of the inner perimeter contour consumed?
// Right means right from the vertical segment.
bool consumed_perimeter_right;
};
// A single hathing line intersecting the ExPolygonWithOffset.
class SegmentedIntersectionLine
{
public:
// Index of this vertical intersection line.
size_t idx;
// Position of the line along the X axis of the oriented bounding box.
// coord_t x;
// Position of this vertical intersection line, rotated to the world coordinate system.
Point pos;
// Direction of this vertical intersection line, rotated to the world coordinate system. The direction is not normalized to maintain a sufficient accuracy!
Vector dir;
// List of intersection points with polygons, sorted increasingly by the y axis.
// The SegmentIntersection keeps a pointer to this object to access the start and direction of this line.
std::vector<SegmentIntersection> intersections;
};
// Return an intersection point of the parent SegmentedIntersectionLine with the segment of a parent ExPolygonWithOffset.
// The intersected segment of the ExPolygonWithOffset is addressed with (iContour, iSegment).
// When calling this method, the SegmentedIntersectionLine must not be parallel with the segment.
Point SegmentIntersection::pos() const
{
// Get the two rays to be intersected.
const Polygon &poly = this->expoly_with_offset->contour(this->iContour);
// 30 bits + 1 signum bit.
const Point &seg_start = poly.points[(this->iSegment == 0) ? poly.points.size() - 1 : this->iSegment - 1];
const Point &seg_end = poly.points[this->iSegment];
// Point, vector of the segment.
const Vec2d p1(seg_start.cast<coordf_t>());
const Vec2d v1((seg_end - seg_start).cast<coordf_t>());
// Point, vector of this hatching line.
const Vec2d p2(line->pos.cast<coordf_t>());
const Vec2d v2(line->dir.cast<coordf_t>());
// Intersect the two rays.
double denom = v1(0) * v2(1) - v2(0) * v1(1);
Point out;
if (denom == 0.) {
// Lines are collinear. As the pos() method is not supposed to be called on collinear vectors,
// the source vectors are not quite collinear. Return the center of the contour segment.
out = seg_start + seg_end;
out(0) >>= 1;
out(1) >>= 1;
} else {
// Find the intersection point.
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
if (t < 0.)
out = seg_start;
else if (t > 1.)
out = seg_end;
else {
out(0) = coord_t(floor(p1(0) + t * v1(0) + 0.5));
out(1) = coord_t(floor(p1(1) + t * v1(1) + 0.5));
}
}
return out;
}
static inline int signum(int64_t v) { return (v > 0) - (v < 0); }
// Returns 0, if this and other segments intersect at the hatching line.
// Returns -1, if this intersection is below the other intersection on the hatching line.
// Returns +1 otherwise.
int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) const
{
assert(this->line == other.line);
assert(this->expoly_with_offset == other.expoly_with_offset);
if (this->iContour == other.iContour && this->iSegment == other.iSegment)
return true;
// Segment of this
const Polygon &poly_a = this->expoly_with_offset->contour(this->iContour);
// 30 bits + 1 signum bit.
const Point &seg_start_a = poly_a.points[(this->iSegment == 0) ? poly_a.points.size() - 1 : this->iSegment - 1];
const Point &seg_end_a = poly_a.points[this->iSegment];
// Segment of other
const Polygon &poly_b = this->expoly_with_offset->contour(other.iContour);
// 30 bits + 1 signum bit.
const Point &seg_start_b = poly_b.points[(other.iSegment == 0) ? poly_b.points.size() - 1 : other.iSegment - 1];
const Point &seg_end_b = poly_b.points[other.iSegment];
if (this->iContour == other.iContour) {
if ((this->iSegment + 1) % poly_a.points.size() == other.iSegment) {
// other.iSegment succeeds this->iSegment
assert(seg_end_a == seg_start_b);
// Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_end_b - this->line->pos).cast<int64_t>()) == 0)
return 0;
} else if ((other.iSegment + 1) % poly_a.points.size() == this->iSegment) {
// this->iSegment succeeds other.iSegment
assert(seg_start_a == seg_end_b);
// Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_start_a - this->line->pos).cast<int64_t>()) == 0)
return 0;
} else {
// General case.
}
}
// First test, whether both points of one segment are completely in one half-plane of the other line.
const Vec2i64 vec_b = (seg_end_b - seg_start_b).cast<int64_t>();
int side_start = signum(cross2(vec_b, (seg_start_a - seg_start_b).cast<int64_t>()));
int side_end = signum(cross2(vec_b, (seg_end_a - seg_start_b).cast<int64_t>()));
int side = side_start * side_end;
if (side > 0)
// This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
return signum(cross2(vec_b, this->line->dir.cast<int64_t>())) * side_start;
const Vec2i64 vec_a = (seg_end_a - seg_start_a).cast<int64_t>();
int side_start2 = signum(cross2(vec_a, (seg_start_b - seg_start_a).cast<int64_t>()));
int side_end2 = signum(cross2(vec_a, (seg_end_b - seg_start_a).cast<int64_t>()));
int side2 = side_start2 * side_end2;
//if (side == 0 && side2 == 0)
// The segments share one of their end points.
if (side2 > 0)
// This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
return signum(cross2(this->line->dir.cast<int64_t>(), vec_a)) * side_start2;
// The two segments intersect and they are not sucessive segments of the same contour.
// Ordering of the points depends on the position of the segment intersection (left / right from this->line),
// therefore a simple test over the input segment end points is not sufficient.
// Find the parameters of intersection of the two segmetns with this->line.
int64_t denom1 = cross2(this->line->dir.cast<int64_t>(), vec_a);
int64_t denom2 = cross2(this->line->dir.cast<int64_t>(), vec_b);
Vec2i64 vx_a = (seg_start_a - this->line->pos).cast<int64_t>();
Vec2i64 vx_b = (seg_start_b - this->line->pos).cast<int64_t>();
int64_t t1_times_denom1 = vx_a(0) * vec_a(1) - vx_a(1) * vec_a(0);
int64_t t2_times_denom2 = vx_b(0) * vec_b(1) - vx_b(1) * vec_b(0);
assert(denom1 != 0);
assert(denom2 != 0);
return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2);
}
// Compare two y intersection points given by rational numbers.
bool SegmentIntersection::operator<(const SegmentIntersection &other) const
{
#ifdef _DEBUG
Point p1 = this->pos();
Point p2 = other.pos();
int64_t d = this->line->dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>());
#endif /* _DEBUG */
int ordering = this->ordering_along_line(other);
#ifdef _DEBUG
if (ordering == -1)
assert(d >= - int64_t(SCALED_EPSILON));
else if (ordering == 1)
assert(d <= int64_t(SCALED_EPSILON));
#endif /* _DEBUG */
return ordering == -1;
}
// When doing a rectilinear / grid / triangle / stars / cubic infill,
// the following class holds the hatching lines of each of the hatching directions.
class InfillHatchingSingleDirection
{
public:
// Hatching angle, CCW from the X axis.
double angle;
// Starting point of the 1st hatching line.
Point start_point;
// Direction vector, its size is not normalized to maintain a sufficient accuracy!
Vector direction;
// Spacing of the hatching lines, perpendicular to the direction vector.
coord_t line_spacing;
// Infill segments oriented at angle.
std::vector<SegmentedIntersectionLine> segs;
};
// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
// paths to be extruded.
static bool prepare_infill_hatching_segments(
// Input geometry to be hatch, containing two concentric contours for each input contour.
const ExPolygonWithOffset &poly_with_offset,
// fill density, dont_adjust
const FillParams &params,
// angle, pattern_shift, spacing
FillRectilinear3::FillDirParams &fill_dir_params,
// Reference point of the pattern, to which the infill lines will be alligned, and the base angle.
const std::pair<float, Point> &rotate_vector,
// Resulting straight segments of the infill graph.
InfillHatchingSingleDirection &out)
{
out.angle = rotate_vector.first + fill_dir_params.angle;
out.direction = Point(coord_t(scale_(1000)), coord_t(0));
// Hatch along the Y axis of the rotated coordinate system.
out.direction.rotate(out.angle + 0.5 * M_PI);
out.segs.clear();
assert(params.density > 0.0001f && params.density <= 1.f);
coord_t line_spacing = coord_t(scale_(fill_dir_params.spacing) / params.density);
// Bounding box around the source contour, aligned with out.angle.
BoundingBox bounding_box = get_extents_rotated(poly_with_offset.polygons_src.contour, - out.angle);
// Define the flow spacing according to requested density.
if (params.full_infill() && ! params.dont_adjust) {
// Full infill, adjust the line spacing to fit an integer number of lines.
out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
// Report back the adjusted line spacing.
fill_dir_params.spacing = unscale<double>(line_spacing);
} else {
// Extend bounding box so that our pattern will be aligned with the other layers.
// Transform the reference point to the rotated coordinate system.
Point refpt = rotate_vector.second.rotated(- out.angle);
// _align_to_grid will not work correctly with positive pattern_shift.
coord_t pattern_shift_scaled = coord_t(scale_(fill_dir_params.pattern_shift)) % line_spacing;
refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
bounding_box.merge(Fill::_align_to_grid(
bounding_box.min,
Point(line_spacing, line_spacing),
refpt));
}
// Intersect a set of euqally spaced vertical lines wiht expolygon.
// n_vlines = ceil(bbox_width / line_spacing)
size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min(0);
if (params.full_infill())
x0 += coord_t((line_spacing + SCALED_EPSILON) / 2);
out.line_spacing = line_spacing;
out.start_point = Point(x0, bounding_box.min(1));
out.start_point.rotate(out.angle);
#ifdef SLIC3R_DEBUG
static int iRun = 0;
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
}
iRun ++;
#endif /* SLIC3R_DEBUG */
// For each contour
// Allocate storage for the segments.
out.segs.assign(n_vlines, SegmentedIntersectionLine());
double cos_a = cos(out.angle);
double sin_a = sin(out.angle);
for (size_t i = 0; i < n_vlines; ++ i) {
auto &seg = out.segs[i];
seg.idx = i;
// seg(0) = x0 + coord_t(i) * line_spacing;
coord_t x = x0 + coord_t(i) * line_spacing;
seg.pos(0) = coord_t(floor(cos_a * x - sin_a * bounding_box.min(1) + 0.5));
seg.pos(1) = coord_t(floor(cos_a * bounding_box.min(1) + sin_a * x + 0.5));
seg.dir = out.direction;
}
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
const Points &contour = poly_with_offset.contour(iContour).points;
if (contour.size() < 2)
continue;
// For each segment
for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
const Point *pl = &contour[iPrev];
const Point *pr = &contour[iSegment];
// Orient the segment to the direction vector.
const Point v = *pr - *pl;
int orientation = Int128::sign_determinant_2x2_filtered(v(0), v(1), out.direction(0), out.direction(1));
if (orientation == 0)
// Ignore strictly vertical segments.
continue;
if (orientation < 0)
// Always orient the input segment consistently towards the hatching direction.
std::swap(pl, pr);
// Which of the equally spaced vertical lines is intersected by this segment?
coord_t l = (coord_t)floor(cos_a * (*pl)(0) + sin_a * (*pl)(1) - SCALED_EPSILON);
coord_t r = (coord_t)ceil (cos_a * (*pr)(0) + sin_a * (*pr)(1) + SCALED_EPSILON);
assert(l < r - SCALED_EPSILON);
// il, ir are the left / right indices of vertical lines intersecting a segment
int il = std::max<int>(0, (l - x0 + line_spacing) / line_spacing);
int ir = std::min<int>(int(out.segs.size()) - 1, (r - x0) / line_spacing);
// The previous tests were done with floating point arithmetics over an epsilon-extended interval.
// Now do the same tests with exact arithmetics over the exact interval.
while (il <= ir && int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
++ il;
while (il <= ir && int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
-- ir;
// Here it is ensured, that
// 1) out.seg is not parallel to (pl, pr)
// 2) all lines from il to ir intersect <pl, pr>.
assert(il >= 0 && ir < int(out.segs.size()));
for (int i = il; i <= ir; ++ i) {
// assert(out.segs[i](0) == i * line_spacing + x0);
// assert(l <= out.segs[i](0));
// assert(r >= out.segs[i](0));
SegmentIntersection is;
is.line = &out.segs[i];
is.expoly_with_offset = &poly_with_offset;
is.iContour = iContour;
is.iSegment = iSegment;
// Test whether the calculated intersection point falls into the bounding box of the input segment.
// +-1 to take rounding into account.
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
assert(is.pos()(0) + 1 >= std::min((*pl)(0), (*pr)(0)));
assert(is.pos()(1) + 1 >= std::min((*pl)(1), (*pr)(1)));
assert(is.pos()(0) <= std::max((*pl)(0), (*pr)(0)) + 1);
assert(is.pos()(1) <= std::max((*pl)(1), (*pr)(1)) + 1);
out.segs[i].intersections.push_back(is);
}
}
}
// Sort the intersections along their segments, specify the intersection types.
for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = out.segs[i_seg];
// Sort the intersection points using exact rational arithmetic.
std::sort(sil.intersections.begin(), sil.intersections.end());
#ifdef _DEBUG
// Verify that the intersections are sorted along the haching direction.
for (size_t i = 1; i < sil.intersections.size(); ++ i) {
Point p1 = sil.intersections[i - 1].pos();
Point p2 = sil.intersections[i].pos();
int64_t d = sil.dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>());
assert(d >= - int64_t(SCALED_EPSILON));
}
#endif /* _DEBUG */
// Assign the intersection types, remove duplicate or overlapping intersection points.
// When a loop vertex touches a vertical line, intersection point is generated for both segments.
// If such two segments are oriented equally, then one of them is removed.
// Otherwise the vertex is tangential to the vertical line and both segments are removed.
// The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
// The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
size_t j = 0;
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
// What is the orientation of the segment at the intersection point?
size_t iContour = sil.intersections[i].iContour;
const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
int dir = int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
// Two successive intersection points on a vertical line with the same contour. This may be a special case.
if (sil.intersections[i] == sil.intersections[j-1]) {
// Two successive segments meet exactly at the vertical line.
#ifdef SLIC3R_DEBUG
// Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
size_t iSegment2 = sil.intersections[j-1].iSegment;
size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
assert(iSegment == iPrev2 || iSegment2 == iPrev);
#endif /* SLIC3R_DEBUG */
if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line.
// Remove the second intersection point.
} else {
// This is a loop returning to the same point.
// It may as well be a vertex of a loop touching this vertical line.
// Remove both the lines.
-- j;
}
} else if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two non successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
// of the Z shaped path is aligned with this vertical line.
// Remove one of the intersection points while maximizing the vertical segment length.
if (low) {
// Remove the second intersection point, keep the first intersection point.
} else {
// Remove the first intersection point, keep the second intersection point.
sil.intersections[j-1] = sil.intersections[i];
}
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
// or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
// Keep both intersection points.
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
}
// Shrink the list of intersections, if any of the intersection was removed during the classification.
if (j < sil.intersections.size())
sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
}
// Verify the segments. If something is wrong, give up.
#define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = out.segs[i_seg];
// The intersection points have to be even.
ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
for (size_t i = 0; i < sil.intersections.size();) {
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
size_t j = i + 1;
ASSERT_OR_RETURN(j < sil.intersections.size());
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
ASSERT_OR_RETURN(j < sil.intersections.size());
ASSERT_OR_RETURN((j & 1) == 1);
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
i = j + 1;
}
}
#undef ASSERT_OR_RETURN
#ifdef _MSC_VER
#pragma warning(push)
#endif /* _MSC_VER */
#ifdef SLIC3R_DEBUG
// Paint the segments and finalize the SVG file.
for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = out.segs[i_seg];
for (size_t i = 0; i < sil.intersections.size();) {
size_t j = i + 1;
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
if (i + 1 == j) {
svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[j ].pos()), "blue");
} else {
svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[i+1].pos()), "green");
svg.draw(Line(sil.intersections[i+1].pos(), sil.intersections[j-1].pos()), (j - i + 1 > 4) ? "yellow" : "magenta");
svg.draw(Line(sil.intersections[j-1].pos(), sil.intersections[j ].pos()), "green");
}
i = j + 1;
}
}
svg.Close();
#endif /* SLIC3R_DEBUG */
return true;
}
/****************************************************************** Legacy code, to be replaced by a graph algorithm ******************************************************************/
// Having a segment of a closed polygon, calculate its Euclidian length.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
#ifdef SLIC3R_DEBUG
// Verify that p1 lies on seg1. This is difficult to verify precisely,
// but at least verify, that p1 lies in the bounding box of seg1.
for (size_t i = 0; i < 2; ++ i) {
size_t seg = (i == 0) ? seg1 : seg2;
Point px = (i == 0) ? p1 : p2;
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
Point pb = poly.points[seg];
if (pa(0) > pb(0))
std::swap(pa(0), pb(0));
if (pa(1) > pb(1))
std::swap(pa(1), pb(1));
assert(px(0) >= pa(0) && px(0) <= pb(0));
assert(px(1) >= pa(1) && px(1) <= pb(1));
}
#endif /* SLIC3R_DEBUG */
const Point *pPrev = &p1;
const Point *pThis = NULL;
coordf_t len = 0;
if (seg1 <= seg2) {
for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
} else {
for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
}
len += (*pPrev - p2).cast<double>().norm();
return len;
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 == seg2) {
// Nothing to append from this segment.
} else if (seg1 < seg2) {
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
} else {
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
}
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// but this time the segment is traversed backward.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 >= seg2) {
out.reserve(seg1 - seg2);
for (size_t i = seg1; i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
} else {
// it could be, that seg1 == seg2. In that case, append the complete loop.
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
for (size_t i = seg1; i > 0; -- i)
out.push_back(polygon.points[i - 1]);
for (size_t i = polygon.points.size(); i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
}
}
static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
{
int d = int(seg2) - int(seg1);
if (! forward)
d = - d;
if (d < 0)
d += int(poly.points.size());
return d;
}
// For a vertical line, an inner contour and an intersection point,
// find an intersection point on the previous resp. next vertical line.
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
// Return -1 if there is no such point on the previous resp. next vertical line.
static inline int intersection_on_prev_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return -1;
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return -1;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
const bool forward = itsct.is_low() == dir_is_next;
// Resulting index of an intersection point on il2.
int out = -1;
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
// at the same orientation as iIntersection, and being closest to iIntersection
// in the number of contour segments, when following the direction of the contour.
int dmin = std::numeric_limits<int>::max();
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il2.intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
/*
if (itsct.is_low()) {
assert(itsct.type == SegmentIntersection::INNER_LOW);
assert(iIntersection > 0);
assert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
assert(i > 0);
if (il2.intersections[i-1].is_inner())
// Take only the lowest inner intersection point.
continue;
assert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
} else {
assert(itsct.type == SegmentIntersection::INNER_HIGH);
assert(iIntersection+1 < il.intersections.size());
assert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
assert(i+1 < il2.intersections.size());
if (il2.intersections[i+1].is_inner())
// Take only the highest inner intersection point.
continue;
assert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
}
*/
// The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest path in the direction of the contour.
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
if (d < dmin) {
out = i;
dmin = d;
}
}
}
//FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
return out;
}
static inline int intersection_on_prev_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
}
static inline int intersection_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
}
enum IntersectionTypeOtherVLine {
// There is no connection point on the other vertical line.
INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
// Connection point on the other vertical segment was found
// and it could be followed.
INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
// The connection segment connects to a middle of a vertical segment.
// Cannot follow.
INTERSECTION_TYPE_OTHER_VLINE_INNER,
// Cannot extend the contor to this intersection point as either the connection segment
// or the succeeding vertical segment were already consumed.
INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
// Not the first intersection along the contor. This intersection point
// has been preceded by an intersection point along the vertical line.
INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
};
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionOther,
bool dir_is_next)
{
// This routine will propose a connecting line even if the connecting perimeter segment intersects
// iVertical line multiple times before reaching iIntersectionOther.
if (iIntersectionOther == size_t(-1))
return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
assert(itsct_other.is_inner());
assert(iIntersectionOther > 0);
assert(iIntersectionOther + 1 < il_other.intersections.size());
// Is iIntersectionOther at the boundary of a vertical segment?
const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
if (itsct_other2.is_inner())
// Cannot follow a perimeter segment into the middle of another vertical segment.
// Only perimeter segments connecting to the end of a vertical segment are followed.
return INTERSECTION_TYPE_OTHER_VLINE_INNER;
assert(itsct_other.is_low() == itsct_other2.is_low());
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
// This perimeter segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
// This vertical segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
return INTERSECTION_TYPE_OTHER_VLINE_OK;
}
static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionPrev)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
}
static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionNext)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
}
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
static inline coordf_t measure_perimeter_prev_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return coordf_t(-1);
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return coordf_t(-1);
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
assert(itsct.type == itsct2.type);
assert(itsct.iContour == itsct2.iContour);
assert(itsct.is_inner());
const bool forward = itsct.is_low() == dir_is_next;
Point p1 = itsct.pos();
Point p2 = itsct2.pos();
return forward ?
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}
static inline coordf_t measure_perimeter_prev_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
}
static inline coordf_t measure_perimeter_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_prev_next_segment(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
++ iVerticalLineOther;
assert(iVerticalLineOther < segs.size());
} else {
assert(iVerticalLineOther > 0);
-- iVerticalLineOther;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
assert(itsct.type == itsct2.type);
assert(itsct.iContour == itsct2.iContour);
assert(itsct.is_inner());
const bool forward = itsct.is_low() == dir_is_next;
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(itsct2.pos());
}
static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
assert(itsct.is_inner());
assert(itsct2.is_inner());
assert(itsct.type != itsct2.type);
assert(itsct.iContour == iInnerContour);
assert(itsct.iContour == itsct2.iContour);
return forward ?
segment_length(poly, itsct .iSegment, itsct.pos(), itsct2.iSegment, itsct2.pos()) :
segment_length(poly, itsct2.iSegment, itsct2.pos(), itsct .iSegment, itsct.pos());
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_segment_on_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
assert(itsct.is_inner());
assert(itsct2.is_inner());
assert(itsct.type != itsct2.type);
assert(itsct.iContour == iInnerContour);
assert(itsct.iContour == itsct2.iContour);
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(itsct2.pos());
}
//TBD: For precise infill, measure the area of a slab spanned by an infill line.
/*
static inline float measure_outer_contour_slab(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t i_vline,
size_t iIntersection)
{
const SegmentedIntersectionLine &il = segs[i_vline];
const SegmentIntersection &itsct = il.intersections[i_vline];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour((itsct.iContour);
assert(itsct.is_outer());
assert(itsct2.is_outer());
assert(itsct.type != itsct2.type);
assert(itsct.iContour == itsct2.iContour);
if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
// Error, return zero area.
return 0.f;
// Find possible connection points on the previous / next vertical line.
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
// Find possible connection points on the same vertical line.
int iAbove = iBelow = -1;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iAbove = i; break; }
// Does the perimeter intersect the current vertical line below intrsctn?
for (int i = int(i_intersection) - 1; i > 0; -- i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iBelow = i; break; }
if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
// The perimeter contour orientation.
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
{
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
}
{
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_FORWARD;
}
}
}
*/
enum DirectionMask
{
DIR_FORWARD = 1,
DIR_BACKWARD = 2
};
// For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure
// for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate
// paths to be extruded.
static bool fill_hatching_segments_legacy(
// Input geometry to be hatch, containing two concentric contours for each input contour.
const ExPolygonWithOffset &poly_with_offset,
// fill density, dont_adjust
const FillParams &params,
const coord_t link_max_length,
// Resulting straight segments of the infill graph.
InfillHatchingSingleDirection &hatching,
Polylines &polylines_out)
{
// At the end, only the new polylines will be rotated back.
size_t n_polylines_out_initial = polylines_out.size();
std::vector<SegmentedIntersectionLine> &segs = hatching.segs;
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
// Mark an outer only chord as consumed, if the distance is low.
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
SegmentedIntersectionLine &seg = segs[i_vline];
for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
bool consumed = false;
// if (params.full_infill()) {
// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
// } else
consumed = true;
seg.intersections[i_intersection].consumed_vertical_up = consumed;
}
}
}
// Now construct a graph.
// Find the first point.
// Naively one would expect to achieve best results by chaining the paths by the shortest distance,
// but that procedure does not create the longest continuous paths.
// A simple "sweep left to right" procedure achieves better results.
size_t i_vline = 0;
size_t i_intersection = size_t(-1);
// Follow the line, connect the lines into a graph.
// Until no new line could be added to the output path:
Point pointLast;
Polyline *polyline_current = NULL;
if (! polylines_out.empty())
pointLast = polylines_out.back().points.back();
for (;;) {
if (i_intersection == size_t(-1)) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
const SegmentedIntersectionLine &seg = segs[i_vline2];
if (! seg.intersections.empty()) {
assert(seg.intersections.size() > 1);
// Even number of intersections with the loops.
assert((seg.intersections.size() & 1) == 0);
assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
for (size_t i = 0; i < seg.intersections.size(); ++ i) {
const SegmentIntersection &intrsctn = seg.intersections[i];
if (intrsctn.is_outer()) {
assert(intrsctn.is_low() || i > 0);
bool consumed = intrsctn.is_low() ?
intrsctn.consumed_vertical_up :
seg.intersections[i-1].consumed_vertical_up;
if (! consumed) {
coordf_t dist2 = (intrsctn.pos() - pointLast).cast<double>().norm();
if (dist2 < dist2min) {
dist2min = dist2;
i_vline = i_vline2;
i_intersection = i;
//FIXME We are taking the first left point always. Verify, that the caller chains the paths
// by a shortest distance, while reversing the paths if needed.
//if (polylines_out.empty())
// Initial state, take the first line, which is the first from the left.
goto found;
}
}
}
}
}
}
if (i_intersection == size_t(-1))
// We are finished.
break;
found:
// Start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
// Emit the first point of a path.
pointLast = segs[i_vline].intersections[i_intersection].pos();
polyline_current->points.push_back(pointLast);
}
// From the initial point (i_vline, i_intersection), follow a path.
SegmentedIntersectionLine &seg = segs[i_vline];
SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
bool going_up = intrsctn->is_low();
bool try_connect = false;
if (going_up) {
assert(! intrsctn->consumed_vertical_up);
assert(i_intersection + 1 < seg.intersections.size());
// Step back to the beginning of the vertical segment to mark it as consumed.
if (intrsctn->is_inner()) {
assert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
}
// Consume the complete vertical segment up to the outer contour.
do {
intrsctn->consumed_vertical_up = true;
++ intrsctn;
++ i_intersection;
assert(i_intersection < seg.intersections.size());
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
if ((intrsctn - 1)->is_inner()) {
// Step back.
-- intrsctn;
-- i_intersection;
assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
try_connect = true;
}
} else {
// Going down.
assert(intrsctn->is_high());
assert(i_intersection > 0);
assert(! (intrsctn - 1)->consumed_vertical_up);
// Consume the complete vertical segment up to the outer contour.
if (intrsctn->is_inner())
intrsctn->consumed_vertical_up = true;
do {
assert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
intrsctn->consumed_vertical_up = true;
} while (intrsctn->type != SegmentIntersection::OUTER_LOW);
if ((intrsctn + 1)->is_inner()) {
// Step back.
++ intrsctn;
++ i_intersection;
assert(intrsctn->type == SegmentIntersection::INNER_LOW);
try_connect = true;
}
}
if (try_connect) {
// Decide, whether to finish the segment, or whether to follow the perimeter.
// 1) Find possible connection points on the previous / next vertical line.
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);
// 2) Find possible connection points on the same vertical line.
int iAbove = -1;
int iBelow = -1;
int iSegAbove = -1;
int iSegBelow = -1;
{
// SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
// SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
if (seg.intersections[i].iContour == intrsctn->iContour) {
iAbove = i;
iSegAbove = seg.intersections[i].iSegment;
break;
}
// Does the perimeter intersect the current vertical line below intrsctn?
for (size_t i = i_intersection - 1; i > 0; -- i)
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
if (seg.intersections[i].iContour == intrsctn->iContour) {
iBelow = i;
iSegBelow = seg.intersections[i].iSegment;
break;
}
}
// 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
// if it is preceded by any other intersection point along the contour.
unsigned int vert_seg_dir_valid_mask =
(going_up ?
(iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
(iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
(DIR_FORWARD | DIR_BACKWARD) :
0;
{
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
// The perimeter contour orientation.
const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
{
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
}
{
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going forward.
intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
}
}
// 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
// Take the shorter path.
//FIXME this may not be always the best strategy to take the shortest connection line now.
bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
(distNext < distPrev) :
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
assert(intrsctn->is_inner());
bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
if (skip) {
// Just skip the connecting contour and start a new path.
goto dont_connect;
polyline_current->points.push_back(intrsctn->pos());
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
polyline_current->points.push_back(il2.intersections[take_next ? iNext : iPrev].pos());
} else {
polyline_current->points.push_back(intrsctn->pos());
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
if (iPrev != -1)
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
if (iNext != -1)
intrsctn->consumed_perimeter_right = true;
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
// Advance to the neighbor line.
if (take_next) {
++ i_vline;
i_intersection = iNext;
} else {
-- i_vline;
i_intersection = iPrev;
}
continue;
}
// 5) Try to connect to a previous or next point on the same vertical line.
if (vert_seg_dir_valid_mask) {
bool valid = true;
// Verify, that there is no intersection with the inner contour up to the end of the contour segment.
// Verify, that the successive segment has not been consumed yet.
if (going_up) {
if (seg.intersections[iAbove].consumed_vertical_up) {
valid = false;
} else {
for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
} else {
if (seg.intersections[iBelow-1].consumed_vertical_up) {
valid = false;
} else {
for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
}
if (valid) {
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
int iNext = going_up ? iAbove : iBelow;
int iSegNext = going_up ? iSegAbove : iSegBelow;
bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
// Take the shorter length between the current and the next intersection point.
(distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
(vert_seg_dir_valid_mask == DIR_FORWARD);
// Skip this perimeter line?
bool skip = params.dont_connect;
if (! skip && link_max_length > 0) {
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
skip = link_length > link_max_length;
}
polyline_current->points.push_back(intrsctn->pos());
if (skip) {
// Just skip the connecting contour and start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
polyline_current->points.push_back(seg.intersections[iNext].pos());
} else {
// Consume the connecting contour and the next segment.
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
// If there are any outer intersection points skipped (bypassed) by the contour,
// mark them as processed.
if (going_up) {
for (int i = (int)i_intersection; i < iAbove; ++ i)
seg.intersections[i].consumed_vertical_up = true;
} else {
for (int i = iBelow; i < (int)i_intersection; ++ i)
seg.intersections[i].consumed_vertical_up = true;
}
// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
intrsctn->consumed_perimeter_right = true;
i_intersection = iNext;
if (going_up)
++ intrsctn;
else
-- intrsctn;
intrsctn->consumed_perimeter_right = true;
continue;
}
}
dont_connect:
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
// This will finish the polyline, starting another polyline at a new point.
if (going_up)
++ intrsctn;
else
-- intrsctn;
}
// Finish the current vertical line,
// reset the current vertical line to pick a new starting point in the next round.
assert(intrsctn->is_outer());
assert(intrsctn->is_high() == going_up);
pointLast = intrsctn->pos();
polyline_current->points.push_back(pointLast);
// Handle duplicate points and zero length segments.
polyline_current->remove_duplicate_points();
assert(! polyline_current->has_duplicate_points());
// Handle nearly zero length edges.
if (polyline_current->points.size() <= 1 ||
(polyline_current->points.size() == 2 &&
std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
polylines_out.pop_back();
intrsctn = NULL;
i_intersection = -1;
polyline_current = NULL;
}
#ifdef SLIC3R_DEBUG
{
static int iRun = 0;
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
svg.draw(polylines_out[i].lines(), "black");
}
// Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
svg.draw(polylines_out[i_polyline].lines(), "black");
}
}
#endif /* SLIC3R_DEBUG */
// paths must be rotated back
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
assert(! it->has_duplicate_points());
//it->rotate(rotate_vector.first);
//FIXME rather simplify the paths to avoid very short edges?
//assert(! it->has_duplicate_points());
it->remove_duplicate_points();
}
#ifdef SLIC3R_DEBUG
// Verify, that there are no duplicate points in the sequence.
for (Polyline &polyline : polylines_out)
assert(! polyline.has_duplicate_points());
#endif /* SLIC3R_DEBUG */
return true;
}
}; // namespace FillRectilinear3_Internal
bool FillRectilinear3::fill_surface_by_lines(const Surface *surface, const FillParams &params, std::vector<FillDirParams> &fill_dir_params, Polylines &polylines_out)
{
assert(params.density > 0.0001f && params.density <= 1.f);
const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
// On the polygons of poly_with_offset, the infill lines will be connected.
FillRectilinear3_Internal::ExPolygonWithOffset poly_with_offset(
surface->expolygon,
float(scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing)),
float(scale_(- 0.5 * this->spacing)));
if (poly_with_offset.n_contours_inner == 0) {
// Not a single infill line fits.
//FIXME maybe one shall trigger the gap fill here?
return true;
}
// Rotate polygons so that we can work with vertical lines here
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
std::vector<FillRectilinear3_Internal::InfillHatchingSingleDirection> hatching(fill_dir_params.size(), FillRectilinear3_Internal::InfillHatchingSingleDirection());
for (size_t i = 0; i < hatching.size(); ++ i)
if (! FillRectilinear3_Internal::prepare_infill_hatching_segments(poly_with_offset, params, fill_dir_params[i], rotate_vector, hatching[i]))
return false;
for (size_t i = 0; i < hatching.size(); ++ i)
if (! FillRectilinear3_Internal::fill_hatching_segments_legacy(
poly_with_offset,
params,
this->link_max_length,
hatching[i],
polylines_out))
return false;
return true;
}
Polylines FillRectilinear3::fill_surface(const Surface *surface, const FillParams &params)
{
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
if (! fill_surface_by_lines(surface, params, fill_dir_params, polylines_out))
printf("FillRectilinear3::fill_surface() failed to fill a region.\n");
if (params.full_infill() && ! params.dont_adjust)
// Return back the adjusted spacing.
this->spacing = fill_dir_params.front().spacing;
return polylines_out;
}
Polylines FillGrid3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers half of the target coverage.
FillParams params2 = params;
params2.density *= 0.5f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f));
fill_dir_params.emplace_back(FillDirParams(this->spacing, float(M_PI / 2.)));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillGrid3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
Polylines FillTriangles3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3.));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillTriangles3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
Polylines FillStars3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.));
fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., 0.5 * this->spacing / params2.density));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillStars3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
Polylines FillCubic3::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
std::vector<FillDirParams> fill_dir_params;
coordf_t dx = sqrt(0.5) * z;
fill_dir_params.emplace_back(FillDirParams(this->spacing, 0., dx));
fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3., -dx));
fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., dx));
if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out))
printf("FillCubic3::fill_surface() failed to fill a region.\n");
return polylines_out;
}
} // namespace Slic3r