2296 lines
82 KiB
C++
2296 lines
82 KiB
C++
/**
|
|
* In this file we will implement the automatic SLA support tree generation.
|
|
*
|
|
*/
|
|
|
|
#include <numeric>
|
|
#include "SLASupportTree.hpp"
|
|
#include "SLABoilerPlate.hpp"
|
|
#include "SLASpatIndex.hpp"
|
|
#include "SLABasePool.hpp"
|
|
|
|
#include <libslic3r/ClipperUtils.hpp>
|
|
#include <libslic3r/Model.hpp>
|
|
|
|
#include <libnest2d/optimizers/nlopt/genetic.hpp>
|
|
#include <boost/log/trivial.hpp>
|
|
#include <tbb/parallel_for.h>
|
|
#include <libslic3r/I18N.hpp>
|
|
|
|
//! macro used to mark string used at localization,
|
|
//! return same string
|
|
#define L(s) Slic3r::I18N::translate(s)
|
|
|
|
/**
|
|
* Terminology:
|
|
*
|
|
* Support point:
|
|
* The point on the model surface that needs support.
|
|
*
|
|
* Pillar:
|
|
* A thick column that spans from a support point to the ground and has
|
|
* a thick cone shaped base where it touches the ground.
|
|
*
|
|
* Ground facing support point:
|
|
* A support point that can be directly connected with the ground with a pillar
|
|
* that does not collide or cut through the model.
|
|
*
|
|
* Non ground facing support point:
|
|
* A support point that cannot be directly connected with the ground (only with
|
|
* the model surface).
|
|
*
|
|
* Head:
|
|
* The pinhead that connects to the model surface with the sharp end end
|
|
* to a pillar or bridge stick with the dull end.
|
|
*
|
|
* Headless support point:
|
|
* A support point on the model surface for which there is not enough place for
|
|
* the head. It is either in a hole or there is some barrier that would collide
|
|
* with the head geometry. The headless support point can be ground facing and
|
|
* non ground facing as well.
|
|
*
|
|
* Bridge:
|
|
* A stick that connects two pillars or a head with a pillar.
|
|
*
|
|
* Junction:
|
|
* A small ball in the intersection of two or more sticks (pillar, bridge, ...)
|
|
*
|
|
* CompactBridge:
|
|
* A bridge that connects a headless support point with the model surface or a
|
|
* nearby pillar.
|
|
*/
|
|
|
|
namespace Slic3r {
|
|
namespace sla {
|
|
|
|
// Compile time configuration value definitions:
|
|
|
|
// The max Z angle for a normal at which it will get completely ignored.
|
|
const double SupportConfig::normal_cutoff_angle = 150.0 * M_PI / 180.0;
|
|
|
|
// The shortest distance of any support structure from the model surface
|
|
const double SupportConfig::safety_distance_mm = 0.5;
|
|
|
|
const double SupportConfig::max_solo_pillar_height_mm = 15.0;
|
|
const double SupportConfig::max_dual_pillar_height_mm = 35.0;
|
|
const double SupportConfig::optimizer_rel_score_diff = 1e-6;
|
|
const unsigned SupportConfig::optimizer_max_iterations = 1000;
|
|
const unsigned SupportConfig::pillar_cascade_neighbors = 3;
|
|
const unsigned SupportConfig::max_bridges_on_pillar = 3;
|
|
|
|
using Coordf = double;
|
|
using Portion = std::tuple<double, double>;
|
|
|
|
inline Portion make_portion(double a, double b) {
|
|
return std::make_tuple(a, b);
|
|
}
|
|
|
|
template<class Vec> double distance(const Vec& p) {
|
|
return std::sqrt(p.transpose() * p);
|
|
}
|
|
|
|
template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
|
|
auto p = pp2 - pp1;
|
|
return distance(p);
|
|
}
|
|
|
|
Contour3D sphere(double rho, Portion portion = make_portion(0.0, 2.0*PI),
|
|
double fa=(2*PI/360)) {
|
|
|
|
Contour3D ret;
|
|
|
|
// prohibit close to zero radius
|
|
if(rho <= 1e-6 && rho >= -1e-6) return ret;
|
|
|
|
auto& vertices = ret.points;
|
|
auto& facets = ret.indices;
|
|
|
|
// Algorithm:
|
|
// Add points one-by-one to the sphere grid and form facets using relative
|
|
// coordinates. Sphere is composed effectively of a mesh of stacked circles.
|
|
|
|
// adjust via rounding to get an even multiple for any provided angle.
|
|
double angle = (2*PI / floor(2*PI / fa));
|
|
|
|
// Ring to be scaled to generate the steps of the sphere
|
|
std::vector<double> ring;
|
|
|
|
for (double i = 0; i < 2*PI; i+=angle) ring.emplace_back(i);
|
|
|
|
const auto sbegin = size_t(2*std::get<0>(portion)/angle);
|
|
const auto send = size_t(2*std::get<1>(portion)/angle);
|
|
|
|
const size_t steps = ring.size();
|
|
const double increment = 1.0 / double(steps);
|
|
|
|
// special case: first ring connects to 0,0,0
|
|
// insert and form facets.
|
|
if(sbegin == 0)
|
|
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*sbegin*2.0*rho));
|
|
|
|
auto id = coord_t(vertices.size());
|
|
for (size_t i = 0; i < ring.size(); i++) {
|
|
// Fixed scaling
|
|
const double z = -rho + increment*rho*2.0 * (sbegin + 1.0);
|
|
// radius of the circle for this step.
|
|
const double r = std::sqrt(std::abs(rho*rho - z*z));
|
|
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
|
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
|
|
|
if(sbegin == 0)
|
|
facets.emplace_back((i == 0) ? Vec3crd(coord_t(ring.size()), 0, 1) :
|
|
Vec3crd(id - 1, 0, id));
|
|
++ id;
|
|
}
|
|
|
|
// General case: insert and form facets for each step,
|
|
// joining it to the ring below it.
|
|
for (size_t s = sbegin + 2; s < send - 1; s++) {
|
|
const double z = -rho + increment*double(s*2.0*rho);
|
|
const double r = std::sqrt(std::abs(rho*rho - z*z));
|
|
|
|
for (size_t i = 0; i < ring.size(); i++) {
|
|
Vec2d b = Eigen::Rotation2Dd(ring[i]) * Eigen::Vector2d(0, r);
|
|
vertices.emplace_back(Vec3d(b(0), b(1), z));
|
|
auto id_ringsize = coord_t(id - int(ring.size()));
|
|
if (i == 0) {
|
|
// wrap around
|
|
facets.emplace_back(Vec3crd(id - 1, id,
|
|
id + coord_t(ring.size() - 1)));
|
|
facets.emplace_back(Vec3crd(id - 1, id_ringsize, id));
|
|
} else {
|
|
facets.emplace_back(Vec3crd(id_ringsize - 1, id_ringsize, id));
|
|
facets.emplace_back(Vec3crd(id - 1, id_ringsize - 1, id));
|
|
}
|
|
id++;
|
|
}
|
|
}
|
|
|
|
// special case: last ring connects to 0,0,rho*2.0
|
|
// only form facets.
|
|
if(send >= size_t(2*PI / angle)) {
|
|
vertices.emplace_back(Vec3d(0.0, 0.0, -rho + increment*send*2.0*rho));
|
|
for (size_t i = 0; i < ring.size(); i++) {
|
|
auto id_ringsize = coord_t(id - int(ring.size()));
|
|
if (i == 0) {
|
|
// third vertex is on the other side of the ring.
|
|
facets.emplace_back(Vec3crd(id - 1, id_ringsize, id));
|
|
} else {
|
|
auto ci = coord_t(id_ringsize + coord_t(i));
|
|
facets.emplace_back(Vec3crd(ci - 1, ci, id));
|
|
}
|
|
}
|
|
}
|
|
id++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Down facing cylinder in Z direction with arguments:
|
|
// r: radius
|
|
// h: Height
|
|
// ssteps: how many edges will create the base circle
|
|
// sp: starting point
|
|
Contour3D cylinder(double r, double h, size_t ssteps, const Vec3d sp = {0,0,0})
|
|
{
|
|
Contour3D ret;
|
|
|
|
auto steps = int(ssteps);
|
|
auto& points = ret.points;
|
|
auto& indices = ret.indices;
|
|
points.reserve(2*ssteps);
|
|
double a = 2*PI/steps;
|
|
|
|
Vec3d jp = sp;
|
|
Vec3d endp = {sp(X), sp(Y), sp(Z) + h};
|
|
|
|
// Upper circle points
|
|
for(int i = 0; i < steps; ++i) {
|
|
double phi = i*a;
|
|
double ex = endp(X) + r*std::cos(phi);
|
|
double ey = endp(Y) + r*std::sin(phi);
|
|
points.emplace_back(ex, ey, endp(Z));
|
|
}
|
|
|
|
// Lower circle points
|
|
for(int i = 0; i < steps; ++i) {
|
|
double phi = i*a;
|
|
double x = jp(X) + r*std::cos(phi);
|
|
double y = jp(Y) + r*std::sin(phi);
|
|
points.emplace_back(x, y, jp(Z));
|
|
}
|
|
|
|
// Now create long triangles connecting upper and lower circles
|
|
indices.reserve(2*ssteps);
|
|
auto offs = steps;
|
|
for(int i = 0; i < steps - 1; ++i) {
|
|
indices.emplace_back(i, i + offs, offs + i + 1);
|
|
indices.emplace_back(i, offs + i + 1, i + 1);
|
|
}
|
|
|
|
// Last triangle connecting the first and last vertices
|
|
auto last = steps - 1;
|
|
indices.emplace_back(0, last, offs);
|
|
indices.emplace_back(last, offs + last, offs);
|
|
|
|
// According to the slicing algorithms, we need to aid them with generating
|
|
// a watertight body. So we create a triangle fan for the upper and lower
|
|
// ending of the cylinder to close the geometry.
|
|
points.emplace_back(jp); size_t ci = points.size() - 1;
|
|
for(int i = 0; i < steps - 1; ++i)
|
|
indices.emplace_back(i + offs + 1, i + offs, ci);
|
|
|
|
indices.emplace_back(offs, steps + offs - 1, ci);
|
|
|
|
points.emplace_back(endp); ci = points.size() - 1;
|
|
for(int i = 0; i < steps - 1; ++i)
|
|
indices.emplace_back(ci, i, i + 1);
|
|
|
|
indices.emplace_back(steps - 1, 0, ci);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct Head {
|
|
Contour3D mesh;
|
|
|
|
size_t steps = 45;
|
|
Vec3d dir = {0, 0, -1};
|
|
Vec3d tr = {0, 0, 0};
|
|
|
|
double r_back_mm = 1;
|
|
double r_pin_mm = 0.5;
|
|
double width_mm = 2;
|
|
double penetration_mm = 0.5;
|
|
|
|
// For identification purposes. This will be used as the index into the
|
|
// container holding the head structures. See SLASupportTree::Impl
|
|
long id = -1;
|
|
|
|
// If there is a pillar connecting to this head, then the id will be set.
|
|
long pillar_id = -1;
|
|
|
|
inline void invalidate() { id = -1; }
|
|
inline bool is_valid() const { return id >= 0; }
|
|
|
|
Head(double r_big_mm,
|
|
double r_small_mm,
|
|
double length_mm,
|
|
double penetration,
|
|
Vec3d direction = {0, 0, -1}, // direction (normal to the dull end )
|
|
Vec3d offset = {0, 0, 0}, // displacement
|
|
const size_t circlesteps = 45):
|
|
steps(circlesteps), dir(direction), tr(offset),
|
|
r_back_mm(r_big_mm), r_pin_mm(r_small_mm), width_mm(length_mm),
|
|
penetration_mm(penetration)
|
|
{
|
|
|
|
// We create two spheres which will be connected with a robe that fits
|
|
// both circles perfectly.
|
|
|
|
// Set up the model detail level
|
|
const double detail = 2*PI/steps;
|
|
|
|
// We don't generate whole circles. Instead, we generate only the
|
|
// portions which are visible (not covered by the robe) To know the
|
|
// exact portion of the bottom and top circles we need to use some
|
|
// rules of tangent circles from which we can derive (using simple
|
|
// triangles the following relations:
|
|
|
|
// The height of the whole mesh
|
|
const double h = r_big_mm + r_small_mm + width_mm;
|
|
double phi = PI/2 - std::acos( (r_big_mm - r_small_mm) / h );
|
|
|
|
// To generate a whole circle we would pass a portion of (0, Pi)
|
|
// To generate only a half horizontal circle we can pass (0, Pi/2)
|
|
// The calculated phi is an offset to the half circles needed to smooth
|
|
// the transition from the circle to the robe geometry
|
|
|
|
auto&& s1 = sphere(r_big_mm, make_portion(0, PI/2 + phi), detail);
|
|
auto&& s2 = sphere(r_small_mm, make_portion(PI/2 + phi, PI), detail);
|
|
|
|
for(auto& p : s2.points) z(p) += h;
|
|
|
|
mesh.merge(s1);
|
|
mesh.merge(s2);
|
|
|
|
for(size_t idx1 = s1.points.size() - steps, idx2 = s1.points.size();
|
|
idx1 < s1.points.size() - 1;
|
|
idx1++, idx2++)
|
|
{
|
|
coord_t i1s1 = coord_t(idx1), i1s2 = coord_t(idx2);
|
|
coord_t i2s1 = i1s1 + 1, i2s2 = i1s2 + 1;
|
|
|
|
mesh.indices.emplace_back(i1s1, i2s1, i2s2);
|
|
mesh.indices.emplace_back(i1s1, i2s2, i1s2);
|
|
}
|
|
|
|
auto i1s1 = coord_t(s1.points.size()) - coord_t(steps);
|
|
auto i2s1 = coord_t(s1.points.size()) - 1;
|
|
auto i1s2 = coord_t(s1.points.size());
|
|
auto i2s2 = coord_t(s1.points.size()) + coord_t(steps) - 1;
|
|
|
|
mesh.indices.emplace_back(i2s2, i2s1, i1s1);
|
|
mesh.indices.emplace_back(i1s2, i2s2, i1s1);
|
|
|
|
// To simplify further processing, we translate the mesh so that the
|
|
// last vertex of the pointing sphere (the pinpoint) will be at (0,0,0)
|
|
for(auto& p : mesh.points) z(p) -= (h + r_small_mm - penetration_mm);
|
|
}
|
|
|
|
void transform()
|
|
{
|
|
using Quaternion = Eigen::Quaternion<double>;
|
|
|
|
// We rotate the head to the specified direction The head's pointing
|
|
// side is facing upwards so this means that it would hold a support
|
|
// point with a normal pointing straight down. This is the reason of
|
|
// the -1 z coordinate
|
|
auto quatern = Quaternion::FromTwoVectors(Vec3d{0, 0, -1}, dir);
|
|
|
|
for(auto& p : mesh.points) p = quatern * p + tr;
|
|
}
|
|
|
|
double fullwidth() const {
|
|
return 2 * r_pin_mm + width_mm + 2*r_back_mm - penetration_mm;
|
|
}
|
|
|
|
static double fullwidth(const SupportConfig& cfg) {
|
|
return 2 * cfg.head_front_radius_mm + cfg.head_width_mm +
|
|
2 * cfg.head_back_radius_mm - cfg.head_penetration_mm;
|
|
}
|
|
|
|
Vec3d junction_point() const {
|
|
return tr + ( 2 * r_pin_mm + width_mm + r_back_mm - penetration_mm)*dir;
|
|
}
|
|
|
|
double request_pillar_radius(double radius) const {
|
|
const double rmax = r_back_mm;
|
|
return radius > 0 && radius < rmax ? radius : rmax;
|
|
}
|
|
};
|
|
|
|
struct Junction {
|
|
Contour3D mesh;
|
|
double r = 1;
|
|
size_t steps = 45;
|
|
Vec3d pos;
|
|
|
|
long id = -1;
|
|
|
|
Junction(const Vec3d& tr, double r_mm, size_t stepnum = 45):
|
|
r(r_mm), steps(stepnum), pos(tr)
|
|
{
|
|
mesh = sphere(r_mm, make_portion(0, PI), 2*PI/steps);
|
|
for(auto& p : mesh.points) p += tr;
|
|
}
|
|
};
|
|
|
|
struct Pillar {
|
|
Contour3D mesh;
|
|
Contour3D base;
|
|
double r = 1;
|
|
size_t steps = 0;
|
|
Vec3d endpt;
|
|
double height = 0;
|
|
|
|
long id = -1;
|
|
|
|
// If the pillar connects to a head, this is the id of that head
|
|
bool starts_from_head = true; // Could start from a junction as well
|
|
long start_junction_id = -1;
|
|
|
|
// How many bridges are connected to this pillar
|
|
unsigned bridges = 0;
|
|
|
|
// How many pillars are cascaded with this one
|
|
unsigned links = 0;
|
|
|
|
Pillar(const Vec3d& jp, const Vec3d& endp,
|
|
double radius = 1, size_t st = 45):
|
|
r(radius), steps(st), endpt(endp), starts_from_head(false)
|
|
{
|
|
assert(steps > 0);
|
|
|
|
height = jp(Z) - endp(Z);
|
|
if(height > 0) { // Endpoint is below the starting point
|
|
|
|
// We just create a bridge geometry with the pillar parameters and
|
|
// move the data.
|
|
Contour3D body = cylinder(radius, height, st, endp);
|
|
mesh.points.swap(body.points);
|
|
mesh.indices.swap(body.indices);
|
|
}
|
|
}
|
|
|
|
Pillar(const Junction& junc, const Vec3d& endp):
|
|
Pillar(junc.pos, endp, junc.r, junc.steps){}
|
|
|
|
Pillar(const Head& head, const Vec3d& endp, double radius = 1):
|
|
Pillar(head.junction_point(), endp, head.request_pillar_radius(radius),
|
|
head.steps)
|
|
{
|
|
}
|
|
|
|
inline Vec3d startpoint() const {
|
|
return {endpt(X), endpt(Y), endpt(Z) + height};
|
|
}
|
|
|
|
inline const Vec3d& endpoint() const { return endpt; }
|
|
|
|
Pillar& add_base(double baseheight = 3, double radius = 2) {
|
|
if(baseheight <= 0) return *this;
|
|
if(baseheight > height) baseheight = height;
|
|
|
|
assert(steps >= 0);
|
|
auto last = int(steps - 1);
|
|
|
|
if(radius < r ) radius = r;
|
|
|
|
double a = 2*PI/steps;
|
|
double z = endpt(Z) + baseheight;
|
|
|
|
for(size_t i = 0; i < steps; ++i) {
|
|
double phi = i*a;
|
|
double x = endpt(X) + r*std::cos(phi);
|
|
double y = endpt(Y) + r*std::sin(phi);
|
|
base.points.emplace_back(x, y, z);
|
|
}
|
|
|
|
for(size_t i = 0; i < steps; ++i) {
|
|
double phi = i*a;
|
|
double x = endpt(X) + radius*std::cos(phi);
|
|
double y = endpt(Y) + radius*std::sin(phi);
|
|
base.points.emplace_back(x, y, z - baseheight);
|
|
}
|
|
|
|
auto ep = endpt; ep(Z) += baseheight;
|
|
base.points.emplace_back(endpt);
|
|
base.points.emplace_back(ep);
|
|
|
|
auto& indices = base.indices;
|
|
auto hcenter = int(base.points.size() - 1);
|
|
auto lcenter = int(base.points.size() - 2);
|
|
auto offs = int(steps);
|
|
for(int i = 0; i < last; ++i) {
|
|
indices.emplace_back(i, i + offs, offs + i + 1);
|
|
indices.emplace_back(i, offs + i + 1, i + 1);
|
|
indices.emplace_back(i, i + 1, hcenter);
|
|
indices.emplace_back(lcenter, offs + i + 1, offs + i);
|
|
}
|
|
|
|
indices.emplace_back(0, last, offs);
|
|
indices.emplace_back(last, offs + last, offs);
|
|
indices.emplace_back(hcenter, last, 0);
|
|
indices.emplace_back(offs, offs + last, lcenter);
|
|
return *this;
|
|
}
|
|
|
|
bool has_base() const { return !base.points.empty(); }
|
|
};
|
|
|
|
// A Bridge between two pillars (with junction endpoints)
|
|
struct Bridge {
|
|
Contour3D mesh;
|
|
double r = 0.8;
|
|
|
|
long id = -1;
|
|
long start_jid = -1;
|
|
long end_jid = -1;
|
|
|
|
// We should reduce the radius a tiny bit to help the convex hull algorithm
|
|
Bridge(const Vec3d& j1, const Vec3d& j2,
|
|
double r_mm = 0.8, size_t steps = 45):
|
|
r(r_mm)
|
|
{
|
|
using Quaternion = Eigen::Quaternion<double>;
|
|
Vec3d dir = (j2 - j1).normalized();
|
|
double d = distance(j2, j1);
|
|
|
|
mesh = cylinder(r, d, steps);
|
|
|
|
auto quater = Quaternion::FromTwoVectors(Vec3d{0,0,1}, dir);
|
|
for(auto& p : mesh.points) p = quater * p + j1;
|
|
}
|
|
|
|
Bridge(const Junction& j1, const Junction& j2, double r_mm = 0.8):
|
|
Bridge(j1.pos, j2.pos, r_mm, j1.steps) {}
|
|
|
|
};
|
|
|
|
// A bridge that spans from model surface to model surface with small connecting
|
|
// edges on the endpoints. Used for headless support points.
|
|
struct CompactBridge {
|
|
Contour3D mesh;
|
|
long id = -1;
|
|
|
|
CompactBridge(const Vec3d& sp,
|
|
const Vec3d& ep,
|
|
const Vec3d& n,
|
|
double r,
|
|
size_t steps = 45)
|
|
{
|
|
Vec3d startp = sp + r * n;
|
|
Vec3d dir = (ep - startp).normalized();
|
|
Vec3d endp = ep - r * dir;
|
|
|
|
Bridge br(startp, endp, r, steps);
|
|
mesh.merge(br.mesh);
|
|
|
|
// now add the pins
|
|
double fa = 2*PI/steps;
|
|
auto upperball = sphere(r, Portion{PI / 2 - fa, PI}, fa);
|
|
for(auto& p : upperball.points) p += startp;
|
|
|
|
auto lowerball = sphere(r, Portion{0, PI/2 + 2*fa}, fa);
|
|
for(auto& p : lowerball.points) p += endp;
|
|
|
|
mesh.merge(upperball);
|
|
mesh.merge(lowerball);
|
|
}
|
|
};
|
|
|
|
// A wrapper struct around the base pool (pad)
|
|
struct Pad {
|
|
TriangleMesh tmesh;
|
|
PoolConfig cfg;
|
|
double zlevel = 0;
|
|
|
|
Pad() {}
|
|
|
|
Pad(const TriangleMesh& object_support_mesh,
|
|
const ExPolygons& baseplate,
|
|
double ground_level,
|
|
const PoolConfig& pcfg) :
|
|
cfg(pcfg),
|
|
zlevel(ground_level +
|
|
(sla::get_pad_fullheight(pcfg) - sla::get_pad_elevation(pcfg)) )
|
|
{
|
|
ExPolygons basep;
|
|
cfg.throw_on_cancel();
|
|
|
|
// The 0.1f is the layer height with which the mesh is sampled and then
|
|
// the layers are unified into one vector of polygons.
|
|
base_plate(object_support_mesh, basep,
|
|
float(cfg.min_wall_height_mm + cfg.min_wall_thickness_mm),
|
|
0.1f, pcfg.throw_on_cancel);
|
|
|
|
for(auto& bp : baseplate) basep.emplace_back(bp);
|
|
|
|
create_base_pool(basep, tmesh, cfg);
|
|
tmesh.translate(0, 0, float(zlevel));
|
|
}
|
|
|
|
bool empty() const { return tmesh.facets_count() == 0; }
|
|
};
|
|
|
|
// The minimum distance for two support points to remain valid.
|
|
static const double /*constexpr*/ D_SP = 0.1;
|
|
|
|
enum { // For indexing Eigen vectors as v(X), v(Y), v(Z) instead of numbers
|
|
X, Y, Z
|
|
};
|
|
|
|
// Calculate the normals for the selected points (from 'points' set) on the
|
|
// mesh. This will call squared distance for each point.
|
|
PointSet normals(const PointSet& points,
|
|
const EigenMesh3D& mesh,
|
|
double eps = 0.05, // min distance from edges
|
|
std::function<void()> throw_on_cancel = [](){},
|
|
const std::vector<unsigned>& selected_points = {});
|
|
|
|
inline Vec2d to_vec2(const Vec3d& v3) {
|
|
return {v3(X), v3(Y)};
|
|
}
|
|
|
|
bool operator==(const SpatElement& e1, const SpatElement& e2) {
|
|
return e1.second == e2.second;
|
|
}
|
|
|
|
// Clustering a set of points by the given distance.
|
|
ClusteredPoints cluster(const std::vector<unsigned>& indices,
|
|
std::function<Vec3d(unsigned)> pointfn,
|
|
double dist,
|
|
unsigned max_points);
|
|
|
|
ClusteredPoints cluster(const PointSet& points,
|
|
double dist,
|
|
unsigned max_points);
|
|
|
|
ClusteredPoints cluster(
|
|
const std::vector<unsigned>& indices,
|
|
std::function<Vec3d(unsigned)> pointfn,
|
|
std::function<bool(const SpatElement&, const SpatElement&)> predicate,
|
|
unsigned max_points);
|
|
|
|
// This class will hold the support tree meshes with some additional bookkeeping
|
|
// as well. Various parts of the support geometry are stored separately and are
|
|
// merged when the caller queries the merged mesh. The merged result is cached
|
|
// for fast subsequent delivery of the merged mesh which can be quite complex.
|
|
// An object of this class will be used as the result type during the support
|
|
// generation algorithm. Parts will be added with the appropriate methods such
|
|
// as add_head or add_pillar which forwards the constructor arguments and fills
|
|
// the IDs of these substructures. The IDs are basically indices into the arrays
|
|
// of the appropriate type (heads, pillars, etc...). One can later query e.g. a
|
|
// pillar for a specific head...
|
|
//
|
|
// The support pad is considered an auxiliary geometry and is not part of the
|
|
// merged mesh. It can be retrieved using a dedicated method (pad())
|
|
class SLASupportTree::Impl {
|
|
std::map<unsigned, Head> m_heads;
|
|
std::vector<Pillar> m_pillars;
|
|
std::vector<Junction> m_junctions;
|
|
std::vector<Bridge> m_bridges;
|
|
std::vector<CompactBridge> m_compact_bridges;
|
|
Controller m_ctl;
|
|
|
|
Pad m_pad;
|
|
mutable TriangleMesh meshcache; mutable bool meshcache_valid = false;
|
|
mutable double model_height = 0; // the full height of the model
|
|
public:
|
|
double ground_level = 0;
|
|
|
|
Impl() = default;
|
|
inline Impl(const Controller& ctl): m_ctl(ctl) {}
|
|
|
|
const Controller& ctl() const { return m_ctl; }
|
|
|
|
template<class...Args> Head& add_head(unsigned id, Args&&... args) {
|
|
auto el = m_heads.emplace(std::piecewise_construct,
|
|
std::forward_as_tuple(id),
|
|
std::forward_as_tuple(std::forward<Args>(args)...));
|
|
el.first->second.id = id;
|
|
meshcache_valid = false;
|
|
return el.first->second;
|
|
}
|
|
|
|
template<class...Args> Pillar& add_pillar(unsigned headid, Args&&... args) {
|
|
auto it = m_heads.find(headid);
|
|
assert(it != m_heads.end());
|
|
Head& head = it->second;
|
|
m_pillars.emplace_back(head, std::forward<Args>(args)...);
|
|
Pillar& pillar = m_pillars.back();
|
|
pillar.id = long(m_pillars.size() - 1);
|
|
head.pillar_id = pillar.id;
|
|
pillar.start_junction_id = head.id;
|
|
pillar.starts_from_head = true;
|
|
meshcache_valid = false;
|
|
return m_pillars.back();
|
|
}
|
|
|
|
void increment_bridges(const Pillar& pillar) {
|
|
assert(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size());
|
|
|
|
if(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size())
|
|
m_pillars[size_t(pillar.id)].bridges++;
|
|
}
|
|
|
|
void increment_links(const Pillar& pillar) {
|
|
assert(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size());
|
|
|
|
if(pillar.id >= 0 && size_t(pillar.id) < m_pillars.size())
|
|
m_pillars[size_t(pillar.id)].links++;
|
|
}
|
|
|
|
template<class...Args> Pillar& add_pillar(Args&&...args)
|
|
{
|
|
m_pillars.emplace_back(std::forward<Args>(args)...);
|
|
Pillar& pillar = m_pillars.back();
|
|
pillar.id = long(m_pillars.size() - 1);
|
|
pillar.starts_from_head = false;
|
|
meshcache_valid = false;
|
|
return m_pillars.back();
|
|
}
|
|
|
|
const Head& pillar_head(long pillar_id) const {
|
|
assert(pillar_id >= 0 && pillar_id < long(m_pillars.size()));
|
|
const Pillar& p = m_pillars[size_t(pillar_id)];
|
|
assert(p.starts_from_head && p.start_junction_id >= 0);
|
|
auto it = m_heads.find(unsigned(p.start_junction_id));
|
|
assert(it != m_heads.end());
|
|
return it->second;
|
|
}
|
|
|
|
const Pillar& head_pillar(unsigned headid) const {
|
|
auto it = m_heads.find(headid);
|
|
assert(it != m_heads.end());
|
|
const Head& h = it->second;
|
|
assert(h.pillar_id >= 0 && h.pillar_id < long(m_pillars.size()));
|
|
return pillar(h.pillar_id);
|
|
}
|
|
|
|
template<class...Args> const Junction& add_junction(Args&&... args) {
|
|
m_junctions.emplace_back(std::forward<Args>(args)...);
|
|
m_junctions.back().id = long(m_junctions.size() - 1);
|
|
meshcache_valid = false;
|
|
return m_junctions.back();
|
|
}
|
|
|
|
template<class...Args> const Bridge& add_bridge(Args&&... args) {
|
|
m_bridges.emplace_back(std::forward<Args>(args)...);
|
|
m_bridges.back().id = long(m_bridges.size() - 1);
|
|
meshcache_valid = false;
|
|
return m_bridges.back();
|
|
}
|
|
|
|
template<class...Args>
|
|
const CompactBridge& add_compact_bridge(Args&&...args) {
|
|
m_compact_bridges.emplace_back(std::forward<Args>(args)...);
|
|
m_compact_bridges.back().id = long(m_compact_bridges.size() - 1);
|
|
meshcache_valid = false;
|
|
return m_compact_bridges.back();
|
|
}
|
|
|
|
const std::map<unsigned, Head>& heads() const { return m_heads; }
|
|
Head& head(unsigned idx) {
|
|
meshcache_valid = false;
|
|
auto it = m_heads.find(idx);
|
|
assert(it != m_heads.end());
|
|
return it->second;
|
|
}
|
|
const std::vector<Pillar>& pillars() const { return m_pillars; }
|
|
const std::vector<Bridge>& bridges() const { return m_bridges; }
|
|
const std::vector<Junction>& junctions() const { return m_junctions; }
|
|
const std::vector<CompactBridge>& compact_bridges() const {
|
|
return m_compact_bridges;
|
|
}
|
|
|
|
template<class T> inline const Pillar& pillar(T id) const {
|
|
static_assert(std::is_integral<T>::value, "Invalid index type");
|
|
assert(id >= 0 && id < m_pillars.size() &&
|
|
id < std::numeric_limits<size_t>::max());
|
|
return m_pillars[size_t(id)];
|
|
}
|
|
|
|
const Pad& create_pad(const TriangleMesh& object_supports,
|
|
const ExPolygons& baseplate,
|
|
const PoolConfig& cfg) {
|
|
m_pad = Pad(object_supports, baseplate, ground_level, cfg);
|
|
return m_pad;
|
|
}
|
|
|
|
void remove_pad() {
|
|
m_pad = Pad();
|
|
}
|
|
|
|
const Pad& pad() const { return m_pad; }
|
|
|
|
// WITHOUT THE PAD!!!
|
|
const TriangleMesh& merged_mesh() const {
|
|
if(meshcache_valid) return meshcache;
|
|
|
|
Contour3D merged;
|
|
|
|
for(auto& headel : heads()) {
|
|
if(m_ctl.stopcondition()) break;
|
|
if(headel.second.is_valid())
|
|
merged.merge(headel.second.mesh);
|
|
}
|
|
|
|
for(auto& stick : pillars()) {
|
|
if(m_ctl.stopcondition()) break;
|
|
merged.merge(stick.mesh);
|
|
merged.merge(stick.base);
|
|
}
|
|
|
|
for(auto& j : junctions()) {
|
|
if(m_ctl.stopcondition()) break;
|
|
merged.merge(j.mesh);
|
|
}
|
|
|
|
for(auto& cb : compact_bridges()) {
|
|
if(m_ctl.stopcondition()) break;
|
|
merged.merge(cb.mesh);
|
|
}
|
|
|
|
for(auto& bs : bridges()) {
|
|
if(m_ctl.stopcondition()) break;
|
|
merged.merge(bs.mesh);
|
|
}
|
|
|
|
|
|
if(m_ctl.stopcondition()) {
|
|
// In case of failure we have to return an empty mesh
|
|
meshcache = TriangleMesh();
|
|
return meshcache;
|
|
}
|
|
|
|
meshcache = mesh(merged);
|
|
|
|
// TODO: Is this necessary?
|
|
//meshcache.repair();
|
|
|
|
BoundingBoxf3&& bb = meshcache.bounding_box();
|
|
model_height = bb.max(Z) - bb.min(Z);
|
|
|
|
meshcache_valid = true;
|
|
return meshcache;
|
|
}
|
|
|
|
// WITH THE PAD
|
|
double full_height() const {
|
|
if(merged_mesh().empty() && !pad().empty())
|
|
return get_pad_fullheight(pad().cfg);
|
|
|
|
double h = mesh_height();
|
|
if(!pad().empty()) h += sla::get_pad_elevation(pad().cfg);
|
|
return h;
|
|
}
|
|
|
|
// WITHOUT THE PAD!!!
|
|
double mesh_height() const {
|
|
if(!meshcache_valid) merged_mesh();
|
|
return model_height;
|
|
}
|
|
|
|
};
|
|
|
|
// This function returns the position of the centroid in the input 'clust'
|
|
// vector of point indices.
|
|
template<class DistFn>
|
|
long cluster_centroid(const ClusterEl& clust,
|
|
std::function<Vec3d(size_t)> pointfn,
|
|
DistFn df)
|
|
{
|
|
switch(clust.size()) {
|
|
case 0: /* empty cluster */ return -1;
|
|
case 1: /* only one element */ return 0;
|
|
case 2: /* if two elements, there is no center */ return 0;
|
|
default: ;
|
|
}
|
|
|
|
// The function works by calculating for each point the average distance
|
|
// from all the other points in the cluster. We create a selector bitmask of
|
|
// the same size as the cluster. The bitmask will have two true bits and
|
|
// false bits for the rest of items and we will loop through all the
|
|
// permutations of the bitmask (combinations of two points). Get the
|
|
// distance for the two points and add the distance to the averages.
|
|
// The point with the smallest average than wins.
|
|
|
|
// The complexity should be O(n^2) but we will mostly apply this function
|
|
// for small clusters only (cca 3 elements)
|
|
|
|
std::vector<bool> sel(clust.size(), false); // create full zero bitmask
|
|
std::fill(sel.end() - 2, sel.end(), true); // insert the two ones
|
|
std::vector<double> avgs(clust.size(), 0.0); // store the average distances
|
|
|
|
do {
|
|
std::array<size_t, 2> idx;
|
|
for(size_t i = 0, j = 0; i < clust.size(); i++) if(sel[i]) idx[j++] = i;
|
|
|
|
double d = df(pointfn(clust[idx[0]]),
|
|
pointfn(clust[idx[1]]));
|
|
|
|
// add the distance to the sums for both associated points
|
|
for(auto i : idx) avgs[i] += d;
|
|
|
|
// now continue with the next permutation of the bitmask with two 1s
|
|
} while(std::next_permutation(sel.begin(), sel.end()));
|
|
|
|
// Divide by point size in the cluster to get the average (may be redundant)
|
|
for(auto& a : avgs) a /= clust.size();
|
|
|
|
// get the lowest average distance and return the index
|
|
auto minit = std::min_element(avgs.begin(), avgs.end());
|
|
return long(minit - avgs.begin());
|
|
}
|
|
|
|
inline Vec3d dirv(const Vec3d& startp, const Vec3d& endp) {
|
|
return (endp - startp).normalized();
|
|
}
|
|
|
|
class SLASupportTree::Algorithm {
|
|
const SupportConfig& m_cfg;
|
|
const EigenMesh3D& m_mesh;
|
|
const std::vector<SupportPoint>& m_support_pts;
|
|
|
|
using PtIndices = std::vector<unsigned>;
|
|
|
|
PtIndices m_iheads; // support points with pinhead
|
|
PtIndices m_iheadless; // headless support points
|
|
|
|
// supp. pts. connecting to model: point index and the ray hit data
|
|
std::vector<std::pair<unsigned, EigenMesh3D::hit_result>> m_iheads_onmodel;
|
|
|
|
// normals for support points from model faces.
|
|
PointSet m_support_nmls;
|
|
|
|
// Clusters of points which can reach the ground directly and can be
|
|
// bridged to one central pillar
|
|
std::vector<PtIndices> m_pillar_clusters;
|
|
|
|
// This algorithm uses the Impl class as its output stream. It will be
|
|
// filled gradually with support elements (heads, pillars, bridges, ...)
|
|
using Result = SLASupportTree::Impl;
|
|
|
|
Result& m_result;
|
|
|
|
// support points in Eigen/IGL format
|
|
PointSet m_points;
|
|
|
|
// throw if canceled: It will be called many times so a shorthand will
|
|
// come in handy.
|
|
ThrowOnCancel m_thr;
|
|
|
|
// A spatial index to easily find strong pillars to connect to.
|
|
SpatIndex m_pillar_index;
|
|
|
|
inline double ray_mesh_intersect(const Vec3d& s,
|
|
const Vec3d& dir)
|
|
{
|
|
return m_mesh.query_ray_hit(s, dir).distance();
|
|
}
|
|
|
|
// This function will test if a future pinhead would not collide with the
|
|
// model geometry. It does not take a 'Head' object because those are
|
|
// created after this test. Parameters: s: The touching point on the model
|
|
// surface. dir: This is the direction of the head from the pin to the back
|
|
// r_pin, r_back: the radiuses of the pin and the back sphere width: This
|
|
// is the full width from the pin center to the back center m: The object
|
|
// mesh.
|
|
// The return value is the hit result from the ray casting. If the starting
|
|
// point was inside the model, an "invalid" hit_result will be returned
|
|
// with a zero distance value instead of a NAN. This way the result can
|
|
// be used safely for comparison with other distances.
|
|
EigenMesh3D::hit_result pinhead_mesh_intersect(
|
|
const Vec3d& s,
|
|
const Vec3d& dir,
|
|
double r_pin,
|
|
double r_back,
|
|
double width)
|
|
{
|
|
static const size_t SAMPLES = 8;
|
|
|
|
// method based on:
|
|
// https://math.stackexchange.com/questions/73237/parametric-equation-of-a-circle-in-3d-space
|
|
|
|
// We will shoot multiple rays from the head pinpoint in the direction
|
|
// of the pinhead robe (side) surface. The result will be the smallest
|
|
// hit distance.
|
|
|
|
// Move away slightly from the touching point to avoid raycasting on the
|
|
// inner surface of the mesh.
|
|
Vec3d v = dir; // Our direction (axis)
|
|
Vec3d c = s + width * dir;
|
|
const double& sd = m_cfg.safety_distance_mm;
|
|
|
|
// Two vectors that will be perpendicular to each other and to the
|
|
// axis. Values for a(X) and a(Y) are now arbitrary, a(Z) is just a
|
|
// placeholder.
|
|
Vec3d a(0, 1, 0), b;
|
|
|
|
// The portions of the circle (the head-back circle) for which we will
|
|
// shoot rays.
|
|
std::array<double, SAMPLES> phis;
|
|
for(size_t i = 0; i < phis.size(); ++i) phis[i] = i*2*PI/phis.size();
|
|
|
|
auto& m = m_mesh;
|
|
using HitResult = EigenMesh3D::hit_result;
|
|
|
|
// Hit results
|
|
std::array<HitResult, SAMPLES> hits;
|
|
|
|
// We have to address the case when the direction vector v (same as
|
|
// dir) is coincident with one of the world axes. In this case two of
|
|
// its components will be completely zero and one is 1.0. Our method
|
|
// becomes dangerous here due to division with zero. Instead, vector
|
|
// 'a' can be an element-wise rotated version of 'v'
|
|
auto chk1 = [] (double val) {
|
|
return std::abs(std::abs(val) - 1) < 1e-20;
|
|
};
|
|
|
|
if(chk1(v(X)) || chk1(v(Y)) || chk1(v(Z))) {
|
|
a = {v(Z), v(X), v(Y)};
|
|
b = {v(Y), v(Z), v(X)};
|
|
}
|
|
else {
|
|
a(Z) = -(v(Y)*a(Y)) / v(Z); a.normalize();
|
|
b = a.cross(v);
|
|
}
|
|
|
|
// Now a and b vectors are perpendicular to v and to each other.
|
|
// Together they define the plane where we have to iterate with the
|
|
// given angles in the 'phis' vector
|
|
tbb::parallel_for(size_t(0), phis.size(),
|
|
[&phis, &hits, &m, sd, r_pin, r_back, s, a, b, c]
|
|
(size_t i)
|
|
{
|
|
double& phi = phis[i];
|
|
double sinphi = std::sin(phi);
|
|
double cosphi = std::cos(phi);
|
|
|
|
// Let's have a safety coefficient for the radiuses.
|
|
double rpscos = (sd + r_pin) * cosphi;
|
|
double rpssin = (sd + r_pin) * sinphi;
|
|
double rpbcos = (sd + r_back) * cosphi;
|
|
double rpbsin = (sd + r_back) * sinphi;
|
|
|
|
// Point on the circle on the pin sphere
|
|
Vec3d ps(s(X) + rpscos * a(X) + rpssin * b(X),
|
|
s(Y) + rpscos * a(Y) + rpssin * b(Y),
|
|
s(Z) + rpscos * a(Z) + rpssin * b(Z));
|
|
|
|
// Point ps is not on mesh but can be inside or outside as well.
|
|
// This would cause many problems with ray-casting. To detect the
|
|
// position we will use the ray-casting result (which has an
|
|
// is_inside predicate).
|
|
|
|
// This is the point on the circle on the back sphere
|
|
Vec3d p(c(X) + rpbcos * a(X) + rpbsin * b(X),
|
|
c(Y) + rpbcos * a(Y) + rpbsin * b(Y),
|
|
c(Z) + rpbcos * a(Z) + rpbsin * b(Z));
|
|
|
|
Vec3d n = (p - ps).normalized();
|
|
auto q = m.query_ray_hit(ps + sd*n, n);
|
|
|
|
if(q.is_inside()) { // the hit is inside the model
|
|
if(q.distance() > r_pin + sd) {
|
|
// If we are inside the model and the hit distance is bigger
|
|
// than our pin circle diameter, it probably indicates that
|
|
// the support point was already inside the model, or there
|
|
// is really no space around the point. We will assign a
|
|
// zero hit distance to these cases which will enforce the
|
|
// function return value to be an invalid ray with zero hit
|
|
// distance. (see min_element at the end)
|
|
hits[i] = HitResult(0.0);
|
|
}
|
|
else {
|
|
// re-cast the ray from the outside of the object.
|
|
// The starting point has an offset of 2*safety_distance
|
|
// because the original ray has also had an offset
|
|
auto q2 = m.query_ray_hit(ps + (q.distance() + 2*sd)*n, n);
|
|
hits[i] = q2;
|
|
}
|
|
} else hits[i] = q;
|
|
});
|
|
|
|
auto mit = std::min_element(hits.begin(), hits.end());
|
|
|
|
return *mit;
|
|
}
|
|
|
|
// Checking bridge (pillar and stick as well) intersection with the model.
|
|
// If the function is used for headless sticks, the ins_check parameter
|
|
// have to be true as the beginning of the stick might be inside the model
|
|
// geometry.
|
|
// The return value is the hit result from the ray casting. If the starting
|
|
// point was inside the model, an "invalid" hit_result will be returned
|
|
// with a zero distance value instead of a NAN. This way the result can
|
|
// be used safely for comparison with other distances.
|
|
EigenMesh3D::hit_result bridge_mesh_intersect(
|
|
const Vec3d& s,
|
|
const Vec3d& dir,
|
|
double r,
|
|
bool ins_check = false)
|
|
{
|
|
static const size_t SAMPLES = 8;
|
|
|
|
// helper vector calculations
|
|
Vec3d a(0, 1, 0), b;
|
|
const double& sd = m_cfg.safety_distance_mm;
|
|
|
|
// INFO: for explanation of the method used here, see the previous
|
|
// method's comments.
|
|
|
|
auto chk1 = [] (double val) {
|
|
return std::abs(std::abs(val) - 1) < 1e-20;
|
|
};
|
|
|
|
if(chk1(dir(X)) || chk1(dir(Y)) || chk1(dir(Z))) {
|
|
a = {dir(Z), dir(X), dir(Y)};
|
|
b = {dir(Y), dir(Z), dir(X)};
|
|
}
|
|
else {
|
|
a(Z) = -(dir(Y)*a(Y)) / dir(Z); a.normalize();
|
|
b = a.cross(dir);
|
|
}
|
|
|
|
// circle portions
|
|
std::array<double, SAMPLES> phis;
|
|
for(size_t i = 0; i < phis.size(); ++i) phis[i] = i*2*PI/phis.size();
|
|
|
|
auto& m = m_mesh;
|
|
using HitResult = EigenMesh3D::hit_result;
|
|
|
|
// Hit results
|
|
std::array<HitResult, SAMPLES> hits;
|
|
|
|
tbb::parallel_for(size_t(0), phis.size(),
|
|
[&m, &phis, a, b, sd, dir, r, s, ins_check, &hits]
|
|
(size_t i)
|
|
{
|
|
double& phi = phis[i];
|
|
double sinphi = std::sin(phi);
|
|
double cosphi = std::cos(phi);
|
|
|
|
// Let's have a safety coefficient for the radiuses.
|
|
double rcos = (sd + r) * cosphi;
|
|
double rsin = (sd + r) * sinphi;
|
|
|
|
// Point on the circle on the pin sphere
|
|
Vec3d p (s(X) + rcos * a(X) + rsin * b(X),
|
|
s(Y) + rcos * a(Y) + rsin * b(Y),
|
|
s(Z) + rcos * a(Z) + rsin * b(Z));
|
|
|
|
auto hr = m.query_ray_hit(p + sd*dir, dir);
|
|
|
|
if(ins_check && hr.is_inside()) {
|
|
if(hr.distance() > r + sd) hits[i] = HitResult(0.0);
|
|
else {
|
|
// re-cast the ray from the outside of the object
|
|
auto hr2 =
|
|
m.query_ray_hit(p + (hr.distance() + 2*sd)*dir, dir);
|
|
|
|
hits[i] = hr2;
|
|
}
|
|
} else hits[i] = hr;
|
|
});
|
|
|
|
auto mit = std::min_element(hits.begin(), hits.end());
|
|
|
|
return *mit;
|
|
}
|
|
|
|
// Helper function for interconnecting two pillars with zig-zag bridges.
|
|
bool interconnect(const Pillar& pillar, const Pillar& nextpillar)
|
|
{
|
|
// We need to get the starting point of the zig-zag pattern. We have to
|
|
// be aware that the two head junctions are at different heights. We
|
|
// may start from the lowest junction and call it a day but this
|
|
// strategy would leave unconnected a lot of pillar duos where the
|
|
// shorter pillar is too short to start a new bridge but the taller
|
|
// pillar could still be bridged with the shorter one.
|
|
bool was_connected = false;
|
|
|
|
Vec3d supper = pillar.startpoint();
|
|
Vec3d slower = nextpillar.startpoint();
|
|
Vec3d eupper = pillar.endpoint();
|
|
Vec3d elower = nextpillar.endpoint();
|
|
|
|
double zmin = m_result.ground_level + m_cfg.base_height_mm;
|
|
eupper(Z) = std::max(eupper(Z), zmin);
|
|
elower(Z) = std::max(elower(Z), zmin);
|
|
|
|
// The usable length of both pillars should be positive
|
|
if(slower(Z) - elower(Z) < 0) return false;
|
|
if(supper(Z) - eupper(Z) < 0) return false;
|
|
|
|
double pillar_dist = distance(Vec2d{slower(X), slower(Y)},
|
|
Vec2d{supper(X), supper(Y)});
|
|
double bridge_distance = pillar_dist / std::cos(-m_cfg.bridge_slope);
|
|
double zstep = pillar_dist * std::tan(-m_cfg.bridge_slope);
|
|
|
|
if(pillar_dist < 2 * m_cfg.head_back_radius_mm ||
|
|
pillar_dist > m_cfg.max_pillar_link_distance_mm) return false;
|
|
|
|
if(supper(Z) < slower(Z)) supper.swap(slower);
|
|
if(eupper(Z) < elower(Z)) eupper.swap(elower);
|
|
|
|
double startz = 0, endz = 0;
|
|
|
|
startz = slower(Z) - zstep < supper(Z) ? slower(Z) - zstep : slower(Z);
|
|
endz = eupper(Z) + zstep > elower(Z) ? eupper(Z) + zstep : eupper(Z);
|
|
|
|
if(slower(Z) - eupper(Z) < std::abs(zstep)) {
|
|
// no space for even one cross
|
|
|
|
// Get max available space
|
|
startz = std::min(supper(Z), slower(Z) - zstep);
|
|
endz = std::max(eupper(Z) + zstep, elower(Z));
|
|
|
|
// Align to center
|
|
double available_dist = (startz - endz);
|
|
double rounds = std::floor(available_dist / std::abs(zstep));
|
|
startz -= 0.5 * (available_dist - rounds * std::abs(zstep));;
|
|
}
|
|
|
|
auto pcm = m_cfg.pillar_connection_mode;
|
|
bool docrosses =
|
|
pcm == PillarConnectionMode::cross ||
|
|
(pcm == PillarConnectionMode::dynamic &&
|
|
pillar_dist > 2*m_cfg.base_radius_mm);
|
|
|
|
// 'sj' means starting junction, 'ej' is the end junction of a bridge.
|
|
// They will be swapped in every iteration thus the zig-zag pattern.
|
|
// According to a config parameter, a second bridge may be added which
|
|
// results in a cross connection between the pillars.
|
|
Vec3d sj = supper, ej = slower; sj(Z) = startz; ej(Z) = sj(Z) + zstep;
|
|
|
|
// TODO: This is a workaround to not have a faulty last bridge
|
|
while(ej(Z) >= eupper(Z) /*endz*/) {
|
|
if(bridge_mesh_intersect(sj,
|
|
dirv(sj, ej),
|
|
pillar.r) >= bridge_distance)
|
|
{
|
|
m_result.add_bridge(sj, ej, pillar.r);
|
|
was_connected = true;
|
|
}
|
|
|
|
// double bridging: (crosses)
|
|
if(docrosses) {
|
|
Vec3d sjback(ej(X), ej(Y), sj(Z));
|
|
Vec3d ejback(sj(X), sj(Y), ej(Z));
|
|
if(sjback(Z) <= slower(Z) && ejback(Z) >= eupper(Z) &&
|
|
bridge_mesh_intersect(sjback,
|
|
dirv(sjback, ejback),
|
|
pillar.r) >= bridge_distance)
|
|
{
|
|
// need to check collision for the cross stick
|
|
m_result.add_bridge(sjback, ejback, pillar.r);
|
|
was_connected = true;
|
|
}
|
|
}
|
|
|
|
sj.swap(ej);
|
|
ej(Z) = sj(Z) + zstep;
|
|
}
|
|
|
|
return was_connected;
|
|
}
|
|
|
|
// For connecting a head to a nearby pillar.
|
|
bool connect_to_nearpillar(const Head& head, long nearpillar_id) {
|
|
|
|
auto nearpillar = [this, nearpillar_id]() { return m_result.pillar(nearpillar_id); };
|
|
if(nearpillar().bridges > m_cfg.max_bridges_on_pillar) return false;
|
|
|
|
Vec3d headjp = head.junction_point();
|
|
Vec3d nearjp_u = nearpillar().startpoint();
|
|
Vec3d nearjp_l = nearpillar().endpoint();
|
|
|
|
double r = head.r_back_mm;
|
|
double d2d = distance(to_2d(headjp), to_2d(nearjp_u));
|
|
double d3d = distance(headjp, nearjp_u);
|
|
|
|
double hdiff = nearjp_u(Z) - headjp(Z);
|
|
double slope = std::atan2(hdiff, d2d);
|
|
|
|
Vec3d bridgestart = headjp;
|
|
Vec3d bridgeend = nearjp_u;
|
|
double max_len = m_cfg.max_bridge_length_mm;
|
|
double max_slope = m_cfg.bridge_slope;
|
|
double zdiff = 0.0;
|
|
|
|
// check the default situation if feasible for a bridge
|
|
if(d3d > max_len || slope > -max_slope) {
|
|
// not feasible to connect the two head junctions. We have to search
|
|
// for a suitable touch point.
|
|
|
|
double Zdown = headjp(Z) + d2d * std::tan(-max_slope);
|
|
Vec3d touchjp = bridgeend; touchjp(Z) = Zdown;
|
|
double D = distance(headjp, touchjp);
|
|
zdiff = Zdown - nearjp_u(Z);
|
|
|
|
if(zdiff > 0) {
|
|
Zdown -= zdiff;
|
|
bridgestart(Z) -= zdiff;
|
|
touchjp(Z) = Zdown;
|
|
|
|
double t = bridge_mesh_intersect(headjp, {0,0,-1}, r);
|
|
|
|
// We can't insert a pillar under the source head to connect
|
|
// with the nearby pillar's starting junction
|
|
if(t < zdiff) return false;
|
|
}
|
|
|
|
if(Zdown <= nearjp_u(Z) && Zdown >= nearjp_l(Z) && D < max_len)
|
|
bridgeend(Z) = Zdown;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// There will be a minimum distance from the ground where the
|
|
// bridge is allowed to connect. This is an empiric value.
|
|
double minz = m_result.ground_level + 2 * m_cfg.head_width_mm;
|
|
if(bridgeend(Z) < minz) return false;
|
|
|
|
double t = bridge_mesh_intersect(bridgestart,
|
|
dirv(bridgestart, bridgeend), r);
|
|
|
|
// Cannot insert the bridge. (further search might not worth the hassle)
|
|
if(t < distance(bridgestart, bridgeend)) return false;
|
|
|
|
// A partial pillar is needed under the starting head.
|
|
if(zdiff > 0) {
|
|
m_result.add_pillar(unsigned(head.id), bridgestart, r);
|
|
m_result.add_junction(bridgestart, r);
|
|
}
|
|
|
|
m_result.add_bridge(bridgestart, bridgeend, r);
|
|
m_result.increment_bridges(nearpillar());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool search_pillar_and_connect(const Head& head) {
|
|
SpatIndex spindex = m_pillar_index;
|
|
|
|
long nearest_id = -1;
|
|
|
|
Vec3d querypoint = head.junction_point();
|
|
|
|
while(nearest_id < 0 && !spindex.empty()) { m_thr();
|
|
// loop until a suitable head is not found
|
|
// if there is a pillar closer than the cluster center
|
|
// (this may happen as the clustering is not perfect)
|
|
// than we will bridge to this closer pillar
|
|
|
|
Vec3d qp(querypoint(X), querypoint(Y), m_result.ground_level);
|
|
auto qres = spindex.nearest(qp, 1);
|
|
if(qres.empty()) break;
|
|
|
|
auto ne = qres.front();
|
|
nearest_id = ne.second;
|
|
|
|
if(nearest_id >= 0) {
|
|
auto nearpillarID = unsigned(nearest_id);
|
|
if(nearpillarID < m_result.pillars().size()) {
|
|
if(!connect_to_nearpillar(head, nearpillarID)) {
|
|
nearest_id = -1; // continue searching
|
|
spindex.remove(ne); // without the current pillar
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return nearest_id >= 0;
|
|
}
|
|
|
|
public:
|
|
|
|
Algorithm(const SupportConfig& config,
|
|
const EigenMesh3D& emesh,
|
|
const std::vector<SupportPoint>& support_pts,
|
|
Result& result,
|
|
ThrowOnCancel thr) :
|
|
m_cfg(config),
|
|
m_mesh(emesh),
|
|
m_support_pts(support_pts),
|
|
m_support_nmls(support_pts.size(), 3),
|
|
m_result(result),
|
|
m_points(support_pts.size(), 3),
|
|
m_thr(thr)
|
|
{
|
|
// Prepare the support points in Eigen/IGL format as well, we will use
|
|
// it mostly in this form.
|
|
|
|
long i = 0;
|
|
for(const SupportPoint& sp : m_support_pts) {
|
|
m_points.row(i)(X) = double(sp.pos(X));
|
|
m_points.row(i)(Y) = double(sp.pos(Y));
|
|
m_points.row(i)(Z) = double(sp.pos(Z));
|
|
++i;
|
|
}
|
|
}
|
|
|
|
|
|
// Now let's define the individual steps of the support generation algorithm
|
|
|
|
// Filtering step: here we will discard inappropriate support points
|
|
// and decide the future of the appropriate ones. We will check if a
|
|
// pinhead is applicable and adjust its angle at each support point. We
|
|
// will also merge the support points that are just too close and can
|
|
// be considered as one.
|
|
void filter() {
|
|
// Get the points that are too close to each other and keep only the
|
|
// first one
|
|
auto aliases = cluster(m_points, D_SP, 2);
|
|
|
|
PtIndices filtered_indices;
|
|
filtered_indices.reserve(aliases.size());
|
|
m_iheads.reserve(aliases.size());
|
|
m_iheadless.reserve(aliases.size());
|
|
for(auto& a : aliases) {
|
|
// Here we keep only the front point of the cluster.
|
|
filtered_indices.emplace_back(a.front());
|
|
}
|
|
|
|
// calculate the normals to the triangles for filtered points
|
|
auto nmls = sla::normals(m_points, m_mesh, m_cfg.head_front_radius_mm,
|
|
m_thr, filtered_indices);
|
|
|
|
// Not all of the support points have to be a valid position for
|
|
// support creation. The angle may be inappropriate or there may
|
|
// not be enough space for the pinhead. Filtering is applied for
|
|
// these reasons.
|
|
|
|
using libnest2d::opt::bound;
|
|
using libnest2d::opt::initvals;
|
|
using libnest2d::opt::GeneticOptimizer;
|
|
using libnest2d::opt::StopCriteria;
|
|
|
|
for(unsigned i = 0, fidx = 0; i < filtered_indices.size(); ++i)
|
|
{
|
|
m_thr();
|
|
|
|
fidx = filtered_indices[i];
|
|
auto n = nmls.row(i);
|
|
|
|
// for all normals we generate the spherical coordinates and
|
|
// saturate the polar angle to 45 degrees from the bottom then
|
|
// convert back to standard coordinates to get the new normal.
|
|
// Then we just create a quaternion from the two normals
|
|
// (Quaternion::FromTwoVectors) and apply the rotation to the
|
|
// arrow head.
|
|
|
|
double z = n(2);
|
|
double r = 1.0; // for normalized vector
|
|
double polar = std::acos(z / r);
|
|
double azimuth = std::atan2(n(1), n(0));
|
|
|
|
// skip if the tilt is not sane
|
|
if(polar >= PI - m_cfg.normal_cutoff_angle) {
|
|
|
|
// We saturate the polar angle to 3pi/4
|
|
polar = std::max(polar, 3*PI / 4);
|
|
|
|
// save the head (pinpoint) position
|
|
Vec3d hp = m_points.row(fidx);
|
|
|
|
double w = m_cfg.head_width_mm +
|
|
m_cfg.head_back_radius_mm +
|
|
2*m_cfg.head_front_radius_mm;
|
|
|
|
double pin_r = double(m_support_pts[fidx].head_front_radius);
|
|
|
|
// Reassemble the now corrected normal
|
|
auto nn = Vec3d(std::cos(azimuth) * std::sin(polar),
|
|
std::sin(azimuth) * std::sin(polar),
|
|
std::cos(polar)).normalized();
|
|
|
|
// check available distance
|
|
double t = pinhead_mesh_intersect(
|
|
hp, // touching point
|
|
nn, // normal
|
|
pin_r,
|
|
m_cfg.head_back_radius_mm,
|
|
w);
|
|
|
|
if(t <= w) {
|
|
|
|
// Let's try to optimize this angle, there might be a
|
|
// viable normal that doesn't collide with the model
|
|
// geometry and its very close to the default.
|
|
|
|
StopCriteria stc;
|
|
stc.max_iterations = m_cfg.optimizer_max_iterations;
|
|
stc.relative_score_difference = m_cfg.optimizer_rel_score_diff;
|
|
stc.stop_score = w; // space greater than w is enough
|
|
GeneticOptimizer solver(stc);
|
|
solver.seed(0); // we want deterministic behavior
|
|
|
|
auto oresult = solver.optimize_max(
|
|
[this, pin_r, w, hp](double plr, double azm)
|
|
{
|
|
auto n = Vec3d(std::cos(azm) * std::sin(plr),
|
|
std::sin(azm) * std::sin(plr),
|
|
std::cos(plr)).normalized();
|
|
|
|
double score = pinhead_mesh_intersect( hp, n, pin_r,
|
|
m_cfg.head_back_radius_mm, w);
|
|
|
|
return score;
|
|
},
|
|
initvals(polar, azimuth), // start with what we have
|
|
bound(3*PI/4, PI), // Must not exceed the tilt limit
|
|
bound(-PI, PI) // azimuth can be a full search
|
|
);
|
|
|
|
if(oresult.score > w) {
|
|
polar = std::get<0>(oresult.optimum);
|
|
azimuth = std::get<1>(oresult.optimum);
|
|
nn = Vec3d(std::cos(azimuth) * std::sin(polar),
|
|
std::sin(azimuth) * std::sin(polar),
|
|
std::cos(polar)).normalized();
|
|
t = oresult.score;
|
|
}
|
|
}
|
|
|
|
// save the verified and corrected normal
|
|
m_support_nmls.row(fidx) = nn;
|
|
|
|
if(t > w) {
|
|
// mark the point for needing a head.
|
|
m_iheads.emplace_back(fidx);
|
|
} else if( polar >= 3*PI/4 ) {
|
|
// Headless supports do not tilt like the headed ones so
|
|
// the normal should point almost to the ground.
|
|
m_iheadless.emplace_back(fidx);
|
|
}
|
|
}
|
|
}
|
|
|
|
m_thr();
|
|
}
|
|
|
|
// Pinhead creation: based on the filtering results, the Head objects
|
|
// will be constructed (together with their triangle meshes).
|
|
void add_pinheads()
|
|
{
|
|
for (unsigned i : m_iheads) {
|
|
m_thr();
|
|
m_result.add_head(
|
|
i,
|
|
m_cfg.head_back_radius_mm,
|
|
m_support_pts[i].head_front_radius,
|
|
m_cfg.head_width_mm,
|
|
m_cfg.head_penetration_mm,
|
|
m_support_nmls.row(i), // dir
|
|
m_support_pts[i].pos.cast<double>() // displacement
|
|
);
|
|
}
|
|
}
|
|
|
|
// Further classification of the support points with pinheads. If the
|
|
// ground is directly reachable through a vertical line parallel to the
|
|
// Z axis we consider a support point as pillar candidate. If touches
|
|
// the model geometry, it will be marked as non-ground facing and
|
|
// further steps will process it. Also, the pillars will be grouped
|
|
// into clusters that can be interconnected with bridges. Elements of
|
|
// these groups may or may not be interconnected. Here we only run the
|
|
// clustering algorithm.
|
|
void classify()
|
|
{
|
|
// We should first get the heads that reach the ground directly
|
|
PtIndices ground_head_indices;
|
|
ground_head_indices.reserve(m_iheads.size());
|
|
m_iheads_onmodel.reserve(m_iheads.size());
|
|
|
|
// First we decide which heads reach the ground and can be full
|
|
// pillars and which shall be connected to the model surface (or
|
|
// search a suitable path around the surface that leads to the
|
|
// ground -- TODO)
|
|
for(unsigned i : m_iheads) {
|
|
m_thr();
|
|
|
|
auto& head = m_result.head(i);
|
|
Vec3d n(0, 0, -1);
|
|
double r = head.r_back_mm;
|
|
Vec3d headjp = head.junction_point();
|
|
|
|
// collision check
|
|
auto hit = bridge_mesh_intersect(headjp, n, r);
|
|
|
|
if(std::isinf(hit.distance())) ground_head_indices.emplace_back(i);
|
|
else if(m_cfg.ground_facing_only) head.invalidate();
|
|
else m_iheads_onmodel.emplace_back(std::make_pair(i, hit));
|
|
}
|
|
|
|
// We want to search for clusters of points that are far enough
|
|
// from each other in the XY plane to not cross their pillar bases
|
|
// These clusters of support points will join in one pillar,
|
|
// possibly in their centroid support point.
|
|
auto pointfn = [this](unsigned i) {
|
|
return m_result.head(i).junction_point();
|
|
};
|
|
auto predicate = [this](const SpatElement& e1, const SpatElement& e2) {
|
|
double d2d = distance(to_2d(e1.first), to_2d(e2.first));
|
|
double d3d = distance(e1.first, e2.first);
|
|
return d2d < 2 * m_cfg.base_radius_mm &&
|
|
d3d < m_cfg.max_bridge_length_mm;
|
|
};
|
|
m_pillar_clusters = cluster(ground_head_indices, pointfn, predicate,
|
|
m_cfg.max_bridges_on_pillar);
|
|
}
|
|
|
|
// Step: Routing the ground connected pinheads, and interconnecting
|
|
// them with additional (angled) bridges. Not all of these pinheads
|
|
// will be a full pillar (ground connected). Some will connect to a
|
|
// nearby pillar using a bridge. The max number of such side-heads for
|
|
// a central pillar is limited to avoid bad weight distribution.
|
|
void routing_to_ground()
|
|
{
|
|
const double pradius = m_cfg.head_back_radius_mm;
|
|
const double gndlvl = m_result.ground_level;
|
|
|
|
ClusterEl cl_centroids;
|
|
cl_centroids.reserve(m_pillar_clusters.size());
|
|
|
|
for(auto& cl : m_pillar_clusters) { m_thr();
|
|
// place all the centroid head positions into the index. We
|
|
// will query for alternative pillar positions. If a sidehead
|
|
// cannot connect to the cluster centroid, we have to search
|
|
// for another head with a full pillar. Also when there are two
|
|
// elements in the cluster, the centroid is arbitrary and the
|
|
// sidehead is allowed to connect to a nearby pillar to
|
|
// increase structural stability.
|
|
|
|
if(cl.empty()) continue;
|
|
|
|
// get the current cluster centroid
|
|
auto& thr = m_thr; const auto& points = m_points;
|
|
long lcid = cluster_centroid(cl,
|
|
[&points](size_t idx) { return points.row(long(idx)); },
|
|
[thr](const Vec3d& p1, const Vec3d& p2)
|
|
{
|
|
thr();
|
|
return distance(Vec2d(p1(X), p1(Y)), Vec2d(p2(X), p2(Y)));
|
|
});
|
|
|
|
assert(lcid >= 0);
|
|
unsigned hid = cl[size_t(lcid)]; // Head ID
|
|
|
|
cl_centroids.emplace_back(hid);
|
|
|
|
Head& h = m_result.head(hid);
|
|
h.transform();
|
|
Vec3d p = h.junction_point(); p(Z) = gndlvl;
|
|
auto& plr = m_result.add_pillar(hid, p, h.r_back_mm)
|
|
.add_base(m_cfg.base_height_mm,
|
|
m_cfg.base_radius_mm);
|
|
|
|
// Save the pillar endpoint and the pillar id in the spatial index
|
|
m_pillar_index.insert(plr.endpoint(), unsigned(plr.id));
|
|
}
|
|
|
|
// now we will go through the clusters ones again and connect the
|
|
// sidepoints with the cluster centroid (which is a ground pillar)
|
|
// or a nearby pillar if the centroid is unreachable.
|
|
size_t ci = 0;
|
|
for(auto cl : m_pillar_clusters) { m_thr();
|
|
|
|
auto cidx = cl_centroids[ci++];
|
|
|
|
// TODO: don't consider the cluster centroid but calculate a
|
|
// central position where the pillar can be placed. this way
|
|
// the weight is distributed more effectively on the pillar.
|
|
|
|
auto centerpillarID = m_result.head_pillar(cidx).id;
|
|
|
|
for(auto c : cl) { m_thr();
|
|
if(c == cidx) continue;
|
|
|
|
auto& sidehead = m_result.head(c);
|
|
sidehead.transform();
|
|
|
|
if(!connect_to_nearpillar(sidehead, centerpillarID) &&
|
|
!search_pillar_and_connect(sidehead))
|
|
{
|
|
Vec3d pstart = sidehead.junction_point();
|
|
Vec3d pend = Vec3d{pstart(X), pstart(Y), gndlvl};
|
|
// Could not find a pillar, create one
|
|
auto& pillar = m_result.add_pillar(unsigned(sidehead.id),
|
|
pend, pradius)
|
|
.add_base(m_cfg.base_height_mm,
|
|
m_cfg.base_radius_mm);
|
|
|
|
// connects to ground, eligible for bridging
|
|
m_pillar_index.insert(pend, unsigned(pillar.id));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step: routing the pinheads that would connect to the model surface
|
|
// along the Z axis downwards. For now these will actually be connected with
|
|
// the model surface with a flipped pinhead. In the future here we could use
|
|
// some smart algorithms to search for a safe path to the ground or to a
|
|
// nearby pillar that can hold the supported weight.
|
|
void routing_to_model()
|
|
{
|
|
|
|
// We need to check if there is an easy way out to the bed surface.
|
|
// If it can be routed there with a bridge shorter than
|
|
// min_bridge_distance.
|
|
|
|
// First we want to index the available pillars. The best is to connect
|
|
// these points to the available pillars
|
|
|
|
auto routedown = [this](Head& head, const Vec3d& dir, double dist)
|
|
{
|
|
head.transform();
|
|
Vec3d hjp = head.junction_point();
|
|
Vec3d endp = hjp + dist * dir;
|
|
m_result.add_bridge(hjp, endp, head.r_back_mm);
|
|
m_result.add_junction(endp, head.r_back_mm);
|
|
|
|
auto groundp = endp;
|
|
groundp(Z) = m_result.ground_level;
|
|
auto& newpillar = m_result.add_pillar(endp, groundp, head.r_back_mm)
|
|
.add_base(m_cfg.base_height_mm,
|
|
m_cfg.base_radius_mm);
|
|
m_pillar_index.insert(groundp, unsigned(newpillar.id));
|
|
};
|
|
|
|
std::vector<unsigned> modelpillars;
|
|
|
|
// TODO: connect these to the ground pillars if possible
|
|
for(auto item : m_iheads_onmodel) { m_thr();
|
|
unsigned idx = item.first;
|
|
EigenMesh3D::hit_result hit = item.second;
|
|
|
|
auto& head = m_result.head(idx);
|
|
Vec3d hjp = head.junction_point();
|
|
|
|
// /////////////////////////////////////////////////////////////////
|
|
// Search nearby pillar
|
|
// /////////////////////////////////////////////////////////////////
|
|
|
|
if(search_pillar_and_connect(head)) { head.transform(); continue; }
|
|
|
|
// /////////////////////////////////////////////////////////////////
|
|
// Try straight path
|
|
// /////////////////////////////////////////////////////////////////
|
|
|
|
// Cannot connect to nearby pillar. We will try to search for
|
|
// a route to the ground.
|
|
|
|
double t = bridge_mesh_intersect(hjp, head.dir, head.r_back_mm);
|
|
double d = 0, tdown = 0;
|
|
Vec3d dirdown(0.0, 0.0, -1.0);
|
|
|
|
t = std::min(t, m_cfg.max_bridge_length_mm);
|
|
|
|
while(d < t && !std::isinf(tdown = bridge_mesh_intersect(
|
|
hjp + d*head.dir,
|
|
dirdown, head.r_back_mm))) {
|
|
d += head.r_back_mm;
|
|
}
|
|
|
|
if(std::isinf(tdown)) { // we heave found a route to the ground
|
|
routedown(head, head.dir, d); continue;
|
|
}
|
|
|
|
// /////////////////////////////////////////////////////////////////
|
|
// Optimize bridge direction
|
|
// /////////////////////////////////////////////////////////////////
|
|
|
|
// Straight path failed so we will try to search for a suitable
|
|
// direction out of the cavity.
|
|
|
|
// Get the spherical representation of the normal. its easier to
|
|
// work with.
|
|
double z = head.dir(Z);
|
|
double r = 1.0; // for normalized vector
|
|
double polar = std::acos(z / r);
|
|
double azimuth = std::atan2(head.dir(Y), head.dir(X));
|
|
|
|
using libnest2d::opt::bound;
|
|
using libnest2d::opt::initvals;
|
|
using libnest2d::opt::GeneticOptimizer;
|
|
using libnest2d::opt::StopCriteria;
|
|
|
|
StopCriteria stc;
|
|
stc.max_iterations = m_cfg.optimizer_max_iterations;
|
|
stc.relative_score_difference = m_cfg.optimizer_rel_score_diff;
|
|
stc.stop_score = 1e6;
|
|
GeneticOptimizer solver(stc);
|
|
solver.seed(0); // we want deterministic behavior
|
|
|
|
double r_back = head.r_back_mm;
|
|
|
|
auto oresult = solver.optimize_max(
|
|
[this, hjp, r_back](double plr, double azm)
|
|
{
|
|
Vec3d n = Vec3d(std::cos(azm) * std::sin(plr),
|
|
std::sin(azm) * std::sin(plr),
|
|
std::cos(plr)).normalized();
|
|
return bridge_mesh_intersect(hjp, n, r_back);
|
|
},
|
|
initvals(polar, azimuth), // let's start with what we have
|
|
bound(3*PI/4, PI), // Must not exceed the slope limit
|
|
bound(-PI, PI) // azimuth can be a full range search
|
|
);
|
|
|
|
d = 0; t = oresult.score;
|
|
|
|
polar = std::get<0>(oresult.optimum);
|
|
azimuth = std::get<1>(oresult.optimum);
|
|
Vec3d bridgedir = Vec3d(std::cos(azimuth) * std::sin(polar),
|
|
std::sin(azimuth) * std::sin(polar),
|
|
std::cos(polar)).normalized();
|
|
|
|
t = std::min(t, m_cfg.max_bridge_length_mm);
|
|
|
|
while(d < t && !std::isinf(tdown = bridge_mesh_intersect(
|
|
hjp + d*bridgedir,
|
|
dirdown,
|
|
head.r_back_mm))) {
|
|
d += head.r_back_mm;
|
|
}
|
|
|
|
if(std::isinf(tdown)) { // we heave found a route to the ground
|
|
routedown(head, bridgedir, d); continue;
|
|
}
|
|
|
|
// /////////////////////////////////////////////////////////////////
|
|
// Route to model body
|
|
// /////////////////////////////////////////////////////////////////
|
|
|
|
double zangle = std::asin(hit.direction()(Z));
|
|
zangle = std::max(zangle, PI/4);
|
|
double h = std::sin(zangle) * head.fullwidth();
|
|
|
|
// The width of the tail head that we would like to have...
|
|
h = std::min(hit.distance() - head.r_back_mm, h);
|
|
|
|
if(h > 0) {
|
|
Vec3d endp{hjp(X), hjp(Y), hjp(Z) - hit.distance() + h};
|
|
auto center_hit = m_mesh.query_ray_hit(hjp, dirdown);
|
|
|
|
double hitdiff = center_hit.distance() - hit.distance();
|
|
Vec3d hitp = std::abs(hitdiff) < 2*head.r_back_mm?
|
|
center_hit.position() : hit.position();
|
|
|
|
head.transform();
|
|
|
|
Pillar& pill = m_result.add_pillar(unsigned(head.id),
|
|
endp,
|
|
head.r_back_mm);
|
|
|
|
Vec3d taildir = endp - hitp;
|
|
double dist = distance(endp, hitp) + m_cfg.head_penetration_mm;
|
|
double w = dist - 2 * head.r_pin_mm - head.r_back_mm;
|
|
|
|
Head tailhead(head.r_back_mm,
|
|
head.r_pin_mm,
|
|
w,
|
|
m_cfg.head_penetration_mm,
|
|
taildir,
|
|
hitp);
|
|
|
|
tailhead.transform();
|
|
pill.base = tailhead.mesh;
|
|
|
|
// Experimental: add the pillar to the index for cascading
|
|
modelpillars.emplace_back(unsigned(pill.id));
|
|
continue;
|
|
}
|
|
|
|
// We have failed to route this head.
|
|
BOOST_LOG_TRIVIAL(warning)
|
|
<< "Failed to route model facing support point."
|
|
<< " ID: " << idx;
|
|
head.invalidate();
|
|
}
|
|
|
|
for(auto pillid : modelpillars) {
|
|
auto& pillar = m_result.pillar(pillid);
|
|
m_pillar_index.insert(pillar.endpoint(), pillid);
|
|
}
|
|
}
|
|
|
|
void interconnect_pillars() {
|
|
// Now comes the algorithm that connects pillars with each other.
|
|
// Ideally every pillar should be connected with at least one of its
|
|
// neighbors if that neighbor is within max_pillar_link_distance
|
|
|
|
// Pillars with height exceeding H1 will require at least one neighbor
|
|
// to connect with. Height exceeding H2 require two neighbors.
|
|
double H1 = m_cfg.max_solo_pillar_height_mm;
|
|
double H2 = m_cfg.max_dual_pillar_height_mm;
|
|
double d = m_cfg.max_pillar_link_distance_mm;
|
|
|
|
//A connection between two pillars only counts if the height ratio is
|
|
// bigger than 50%
|
|
double min_height_ratio = 0.5;
|
|
|
|
std::set<unsigned long> pairs;
|
|
|
|
auto cascadefn =
|
|
[this, d, &pairs, min_height_ratio, H1] (const SpatElement& el)
|
|
{
|
|
Vec3d qp = el.first;
|
|
|
|
const Pillar& pillar = m_result.pillar(el.second);
|
|
|
|
unsigned neighbors = m_cfg.pillar_cascade_neighbors;
|
|
|
|
// connections are enough for one pillar
|
|
if(pillar.links >= neighbors) return;
|
|
|
|
// Query all remaining points within reach
|
|
auto qres = m_pillar_index.query([qp, d](const SpatElement& e){
|
|
return distance(e.first, qp) < d;
|
|
});
|
|
|
|
// sort the result by distance (have to check if this is needed)
|
|
std::sort(qres.begin(), qres.end(),
|
|
[qp](const SpatElement& e1, const SpatElement& e2){
|
|
return distance(e1.first, qp) < distance(e2.first, qp);
|
|
});
|
|
|
|
for(auto& re : qres) {
|
|
|
|
if(re.second == el.second) continue;
|
|
|
|
auto a = el.second, b = re.second;
|
|
|
|
// I hope that the area of a square is never equal to its
|
|
// circumference
|
|
auto hashval = 2 * (a + b) + a * b;
|
|
|
|
if(pairs.find(hashval) != pairs.end()) continue;
|
|
|
|
const Pillar& neighborpillar = m_result.pillars()[re.second];
|
|
|
|
// this neighbor is occupied
|
|
if(neighborpillar.links >= neighbors) continue;
|
|
|
|
if(interconnect(pillar, neighborpillar)) {
|
|
pairs.insert(hashval);
|
|
|
|
// If the interconnection length between the two pillars is
|
|
// less than 50% of the longer pillar's height, don't count
|
|
if(pillar.height < H1 ||
|
|
neighborpillar.height / pillar.height > min_height_ratio)
|
|
m_result.increment_links(pillar);
|
|
|
|
if(neighborpillar.height < H1 ||
|
|
pillar.height / neighborpillar.height > min_height_ratio)
|
|
m_result.increment_links(neighborpillar);
|
|
|
|
}
|
|
|
|
// connections are enough for one pillar
|
|
if(pillar.links >= neighbors) break;
|
|
}
|
|
};
|
|
|
|
m_pillar_index.foreach(cascadefn);
|
|
|
|
size_t pillarcount = m_result.pillars().size();
|
|
|
|
for(size_t pid = 0; pid < pillarcount; pid++) {
|
|
auto pillar = [this, pid]() { return m_result.pillar(pid); };
|
|
|
|
unsigned needpillars = 0;
|
|
if(pillar().bridges > m_cfg.max_bridges_on_pillar) needpillars = 3;
|
|
else if(pillar().links < 2 && pillar().height > H2) {
|
|
// Not enough neighbors to support this pillar
|
|
needpillars = 2 - pillar().links;
|
|
}
|
|
else if(pillar().links < 1 && pillar().height > H1) {
|
|
// No neighbors could be found and the pillar is too long.
|
|
needpillars = 1;
|
|
}
|
|
|
|
// Search for new pillar locations
|
|
bool found = false;
|
|
double alpha = 0; // goes to 2Pi
|
|
double r = 2 * m_cfg.base_radius_mm;
|
|
Vec3d pillarsp = pillar().startpoint();
|
|
Vec3d sp(pillarsp(X), pillarsp(Y), pillarsp(Z) - r);
|
|
std::vector<bool> tv(needpillars, false);
|
|
std::vector<Vec3d> spts(needpillars);
|
|
|
|
while(!found && alpha < 2*PI) {
|
|
|
|
for(unsigned n = 0; n < needpillars; n++) {
|
|
double a = alpha + n * PI/3;
|
|
Vec3d s = sp;
|
|
s(X) += std::cos(a) * r;
|
|
s(Y) += std::sin(a) * r;
|
|
spts[n] = s;
|
|
auto hr = bridge_mesh_intersect(s, {0, 0, -1}, pillar().r);
|
|
tv[n] = std::isinf(hr.distance());
|
|
}
|
|
|
|
found = std::all_of(tv.begin(), tv.end(), [](bool v){return v;});
|
|
|
|
// 20 angles will be tried...
|
|
alpha += 0.1 * PI;
|
|
}
|
|
|
|
std::vector<long> newpills;
|
|
newpills.reserve(needpillars);
|
|
|
|
if(found) for(unsigned n = 0; n < needpillars; n++) {
|
|
Vec3d s = spts[n]; double gnd = m_result.ground_level;
|
|
Pillar p(s, Vec3d(s(X), s(Y), gnd), pillar().r);
|
|
p.add_base(m_cfg.base_height_mm, m_cfg.base_radius_mm);
|
|
|
|
if(interconnect(pillar(), p)) {
|
|
Pillar& pp = m_result.add_pillar(p);
|
|
m_pillar_index.insert(pp.endpoint(), unsigned(pp.id));
|
|
|
|
m_result.add_junction(s, pillar().r);
|
|
double t = bridge_mesh_intersect(pillarsp,
|
|
dirv(pillarsp, s),
|
|
pillar().r);
|
|
if(distance(pillarsp, s) < t)
|
|
m_result.add_bridge(pillarsp, s, pillar().r);
|
|
|
|
if(pillar().endpoint()(Z) > m_result.ground_level)
|
|
m_result.add_junction(pillar().endpoint(), pillar().r);
|
|
|
|
newpills.emplace_back(pp.id);
|
|
m_result.increment_links(pillar());
|
|
}
|
|
}
|
|
|
|
if(!newpills.empty()) {
|
|
for(auto it = newpills.begin(), nx = std::next(it);
|
|
nx != newpills.end(); ++it, ++nx) {
|
|
const Pillar& itpll = m_result.pillar(*it);
|
|
const Pillar& nxpll = m_result.pillar(*nx);
|
|
if(interconnect(itpll, nxpll)) {
|
|
m_result.increment_links(itpll);
|
|
m_result.increment_links(nxpll);
|
|
}
|
|
}
|
|
|
|
m_pillar_index.foreach(cascadefn);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step: process the support points where there is not enough space for a
|
|
// full pinhead. In this case we will use a rounded sphere as a touching
|
|
// point and use a thinner bridge (let's call it a stick).
|
|
void routing_headless ()
|
|
{
|
|
// For now we will just generate smaller headless sticks with a sharp
|
|
// ending point that connects to the mesh surface.
|
|
|
|
// We will sink the pins into the model surface for a distance of 1/3 of
|
|
// the pin radius
|
|
for(unsigned i : m_iheadless) { m_thr();
|
|
|
|
const auto R = double(m_support_pts[i].head_front_radius);
|
|
const double HWIDTH_MM = R/3;
|
|
|
|
// Exact support position
|
|
Vec3d sph = m_support_pts[i].pos.cast<double>();
|
|
Vec3d n = m_support_nmls.row(i); // mesh outward normal
|
|
Vec3d sp = sph - n * HWIDTH_MM; // stick head start point
|
|
|
|
Vec3d dir = {0, 0, -1};
|
|
Vec3d sj = sp + R * n; // stick start point
|
|
|
|
// This is only for checking
|
|
double idist = bridge_mesh_intersect(sph, dir, R, true);
|
|
double dist = ray_mesh_intersect(sj, dir);
|
|
|
|
if(std::isinf(idist) || std::isnan(idist) || idist < 2*R ||
|
|
std::isinf(dist) || std::isnan(dist) || dist < 2*R) {
|
|
BOOST_LOG_TRIVIAL(warning) << "Can not find route for headless"
|
|
<< " support stick at: "
|
|
<< sj.transpose();
|
|
continue;
|
|
}
|
|
|
|
Vec3d ej = sj + (dist + HWIDTH_MM)* dir;
|
|
m_result.add_compact_bridge(sp, ej, n, R);
|
|
}
|
|
}
|
|
};
|
|
|
|
bool SLASupportTree::generate(const std::vector<SupportPoint> &support_points,
|
|
const EigenMesh3D& mesh,
|
|
const SupportConfig &cfg,
|
|
const Controller &ctl)
|
|
{
|
|
if(support_points.empty()) return false;
|
|
|
|
Algorithm alg(cfg, mesh, support_points, *m_impl, ctl.cancelfn);
|
|
|
|
// Let's define the individual steps of the processing. We can experiment
|
|
// later with the ordering and the dependencies between them.
|
|
enum Steps {
|
|
BEGIN,
|
|
FILTER,
|
|
PINHEADS,
|
|
CLASSIFY,
|
|
ROUTING_GROUND,
|
|
ROUTING_NONGROUND,
|
|
CASCADE_PILLARS,
|
|
HEADLESS,
|
|
DONE,
|
|
ABORT,
|
|
NUM_STEPS
|
|
//...
|
|
};
|
|
|
|
// Collect the algorithm steps into a nice sequence
|
|
std::array<std::function<void()>, NUM_STEPS> program = {
|
|
[] () {
|
|
// Begin...
|
|
// Potentially clear up the shared data (not needed for now)
|
|
},
|
|
|
|
std::bind(&Algorithm::filter, &alg),
|
|
|
|
std::bind(&Algorithm::add_pinheads, &alg),
|
|
|
|
std::bind(&Algorithm::classify, &alg),
|
|
|
|
std::bind(&Algorithm::routing_to_ground, &alg),
|
|
|
|
std::bind(&Algorithm::routing_to_model, &alg),
|
|
|
|
std::bind(&Algorithm::interconnect_pillars, &alg),
|
|
|
|
std::bind(&Algorithm::routing_headless, &alg),
|
|
|
|
[] () {
|
|
// Done
|
|
},
|
|
|
|
[] () {
|
|
// Abort
|
|
}
|
|
};
|
|
|
|
Steps pc = BEGIN;
|
|
|
|
if(cfg.ground_facing_only) {
|
|
program[ROUTING_NONGROUND] = []() {
|
|
BOOST_LOG_TRIVIAL(info)
|
|
<< "Skipping model-facing supports as requested.";
|
|
};
|
|
program[HEADLESS] = []() {
|
|
BOOST_LOG_TRIVIAL(info) << "Skipping headless stick generation as"
|
|
" requested.";
|
|
};
|
|
}
|
|
|
|
// Let's define a simple automaton that will run our program.
|
|
auto progress = [&ctl, &pc] () {
|
|
static const std::array<std::string, NUM_STEPS> stepstr {
|
|
"Starting",
|
|
"Filtering",
|
|
"Generate pinheads",
|
|
"Classification",
|
|
"Routing to ground",
|
|
"Routing supports to model surface",
|
|
"Interconnecting pillars",
|
|
"Processing small holes",
|
|
"Done",
|
|
"Abort"
|
|
};
|
|
|
|
static const std::array<unsigned, NUM_STEPS> stepstate {
|
|
0,
|
|
10,
|
|
30,
|
|
50,
|
|
60,
|
|
70,
|
|
80,
|
|
90,
|
|
100,
|
|
0
|
|
};
|
|
|
|
if(ctl.stopcondition()) pc = ABORT;
|
|
|
|
switch(pc) {
|
|
case BEGIN: pc = FILTER; break;
|
|
case FILTER: pc = PINHEADS; break;
|
|
case PINHEADS: pc = CLASSIFY; break;
|
|
case CLASSIFY: pc = ROUTING_GROUND; break;
|
|
case ROUTING_GROUND: pc = ROUTING_NONGROUND; break;
|
|
case ROUTING_NONGROUND: pc = CASCADE_PILLARS; break;
|
|
case CASCADE_PILLARS: pc = HEADLESS; break;
|
|
case HEADLESS: pc = DONE; break;
|
|
case DONE:
|
|
case ABORT: break;
|
|
default: ;
|
|
}
|
|
ctl.statuscb(stepstate[pc], stepstr[pc]);
|
|
};
|
|
|
|
// Just here we run the computation...
|
|
while(pc < DONE) {
|
|
progress();
|
|
program[pc]();
|
|
}
|
|
|
|
return pc == ABORT;
|
|
}
|
|
|
|
SLASupportTree::SLASupportTree(): m_impl(new Impl()) {}
|
|
|
|
const TriangleMesh &SLASupportTree::merged_mesh() const
|
|
{
|
|
return get().merged_mesh();
|
|
}
|
|
|
|
void SLASupportTree::merged_mesh_with_pad(TriangleMesh &outmesh) const {
|
|
outmesh.merge(merged_mesh());
|
|
outmesh.merge(get_pad());
|
|
}
|
|
|
|
SlicedSupports SLASupportTree::slice(float layerh, float init_layerh) const
|
|
{
|
|
if(init_layerh < 0) init_layerh = layerh;
|
|
auto& stree = get();
|
|
|
|
const auto modelh = float(stree.full_height());
|
|
auto gndlvl = float(this->m_impl->ground_level);
|
|
const Pad& pad = m_impl->pad();
|
|
if(!pad.empty()) gndlvl -= float(get_pad_elevation(pad.cfg));
|
|
|
|
std::vector<float> heights;
|
|
heights.reserve(size_t(modelh/layerh) + 1);
|
|
|
|
for(float h = gndlvl + init_layerh; h < gndlvl + modelh; h += layerh) {
|
|
heights.emplace_back(h);
|
|
}
|
|
|
|
TriangleMesh fullmesh = m_impl->merged_mesh();
|
|
fullmesh.merge(get_pad());
|
|
TriangleMeshSlicer slicer(&fullmesh);
|
|
SlicedSupports ret;
|
|
slicer.slice(heights, 0.f, &ret, get().ctl().cancelfn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
SlicedSupports SLASupportTree::slice(const std::vector<float> &heights,
|
|
float cr) const
|
|
{
|
|
TriangleMesh fullmesh = m_impl->merged_mesh();
|
|
fullmesh.merge(get_pad());
|
|
TriangleMeshSlicer slicer(&fullmesh);
|
|
SlicedSupports ret;
|
|
slicer.slice(heights, cr, &ret, get().ctl().cancelfn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
const TriangleMesh &SLASupportTree::add_pad(const SliceLayer& baseplate,
|
|
const PoolConfig& pcfg) const
|
|
{
|
|
// PoolConfig pcfg;
|
|
// pcfg.min_wall_thickness_mm = min_wall_thickness_mm;
|
|
// pcfg.min_wall_height_mm = min_wall_height_mm;
|
|
// pcfg.max_merge_distance_mm = max_merge_distance_mm;
|
|
// pcfg.edge_radius_mm = edge_radius_mm;
|
|
return m_impl->create_pad(merged_mesh(), baseplate, pcfg).tmesh;
|
|
}
|
|
|
|
const TriangleMesh &SLASupportTree::get_pad() const
|
|
{
|
|
return m_impl->pad().tmesh;
|
|
}
|
|
|
|
void SLASupportTree::remove_pad()
|
|
{
|
|
m_impl->remove_pad();
|
|
}
|
|
|
|
SLASupportTree::SLASupportTree(const std::vector<SupportPoint> &points,
|
|
const EigenMesh3D& emesh,
|
|
const SupportConfig &cfg,
|
|
const Controller &ctl):
|
|
m_impl(new Impl(ctl))
|
|
{
|
|
m_impl->ground_level = emesh.ground_level() - cfg.object_elevation_mm;
|
|
generate(points, emesh, cfg, ctl);
|
|
}
|
|
|
|
SLASupportTree::SLASupportTree(const SLASupportTree &c):
|
|
m_impl(new Impl(*c.m_impl)) {}
|
|
|
|
SLASupportTree &SLASupportTree::operator=(const SLASupportTree &c)
|
|
{
|
|
m_impl = make_unique<Impl>(*c.m_impl);
|
|
return *this;
|
|
}
|
|
|
|
SLASupportTree::~SLASupportTree() {}
|
|
|
|
}
|
|
}
|