orcaslicer/src/libslic3r/LayerRegion.cpp
Nick Johnson fd0b2547f2
Add support for structured noise (perlin) fuzzy skin (#7678)
* Add support for perlin noise fuzzy skin

* Support multiple types of coherent noise

* Updated tooltips for more clarity.

* Reorder options as suggested by @discip

* Fix accidental removal of &

* Move libnoise to deps

---------

Co-authored-by: SoftFever <softfeverever@gmail.com>
2025-01-27 22:45:16 +08:00

1078 lines
49 KiB
C++

#include "Layer.hpp"
#include "BridgeDetector.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "PerimeterGenerator.hpp"
#include "Print.hpp"
#include "Surface.hpp"
#include "BoundingBox.hpp"
#include "SVG.hpp"
#include "Algorithm/RegionExpansion.hpp"
#include <string>
#include <map>
#include <boost/log/trivial.hpp>
#include <boost/algorithm/clamp.hpp>
namespace Slic3r {
Flow LayerRegion::flow(FlowRole role) const
{
return this->flow(role, m_layer->height);
}
Flow LayerRegion::flow(FlowRole role, double layer_height) const
{
return m_region->flow(*m_layer->object(), role, layer_height, m_layer->id() == 0);
}
Flow LayerRegion::bridging_flow(FlowRole role, bool thick_bridge) const
{
const PrintRegion &region = this->region();
const PrintRegionConfig &region_config = region.config();
const PrintObject &print_object = *this->layer()->object();
Flow bridge_flow;
auto nozzle_diameter = float(print_object.print()->config().nozzle_diameter.get_at(region.extruder(role) - 1));
if (thick_bridge) {
// The old Slic3r way (different from all other slicers): Use rounded extrusions.
// Get the configured nozzle_diameter for the extruder associated to the flow role requested.
// Here this->extruder(role) - 1 may underflow to MAX_INT, but then the get_at() will follback to zero'th element, so everything is all right.
// Applies default bridge spacing.
bridge_flow = Flow::bridging_flow(float(sqrt(region_config.bridge_flow)) * nozzle_diameter, nozzle_diameter);
} else {
// The same way as other slicers: Use normal extrusions. Apply bridge_flow while maintaining the original spacing.
bridge_flow = this->flow(role).with_flow_ratio(region_config.bridge_flow);
}
return bridge_flow;
}
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
void LayerRegion::slices_to_fill_surfaces_clipped()
{
// Note: this method should be idempotent, but fill_surfaces gets modified
// in place. However we're now only using its boundaries (which are invariant)
// so we're safe. This guarantees idempotence of prepare_infill() also in case
// that combine_infill() turns some fill_surface into VOID surfaces.
// Collect polygons per surface type.
std::array<SurfacesPtr, size_t(stCount)> by_surface;
for (Surface &surface : this->slices.surfaces)
by_surface[size_t(surface.surface_type)].emplace_back(&surface);
// Trim surfaces by the fill_boundaries.
this->fill_surfaces.surfaces.clear();
for (size_t surface_type = 0; surface_type < size_t(stCount); ++ surface_type) {
const SurfacesPtr &this_surfaces = by_surface[surface_type];
if (! this_surfaces.empty())
this->fill_surfaces.append(intersection_ex(this_surfaces, this->fill_expolygons), SurfaceType(surface_type));
}
}
void LayerRegion::make_perimeters(const SurfaceCollection &slices, const LayerRegionPtrs &compatible_regions, SurfaceCollection* fill_surfaces, ExPolygons* fill_no_overlap)
{
this->perimeters.clear();
this->thin_fills.clear();
const PrintConfig &print_config = this->layer()->object()->print()->config();
const PrintRegionConfig &region_config = this->region().config();
const PrintObjectConfig& object_config = this->layer()->object()->config();
// This needs to be in sync with PrintObject::_slice() slicing_mode_normal_below_layer!
bool spiral_mode = print_config.spiral_mode &&
//FIXME account for raft layers.
(this->layer()->id() >= size_t(region_config.bottom_shell_layers.value) &&
this->layer()->print_z >= region_config.bottom_shell_thickness - EPSILON);
PerimeterGenerator g(
// input:
&slices,
&compatible_regions,
this->layer()->height,
this->layer()->slice_z,
this->flow(frPerimeter),
&region_config,
&this->layer()->object()->config(),
&print_config,
spiral_mode,
// output:
&this->perimeters,
&this->thin_fills,
fill_surfaces,
//BBS
fill_no_overlap
);
if (this->layer()->lower_layer != nullptr)
// Cummulative sum of polygons over all the regions.
g.lower_slices = &this->layer()->lower_layer->lslices;
if (this->layer()->upper_layer != NULL)
g.upper_slices = &this->layer()->upper_layer->lslices;
g.layer_id = (int)this->layer()->id();
g.ext_perimeter_flow = this->flow(frExternalPerimeter);
g.overhang_flow = this->bridging_flow(frPerimeter, object_config.thick_bridges);
g.solid_infill_flow = this->flow(frSolidInfill);
if (this->layer()->object()->config().wall_generator.value == PerimeterGeneratorType::Arachne && !spiral_mode)
g.process_arachne();
else
g.process_classic();
}
#if 1
// Extract surfaces of given type from surfaces, extract fill (layer) thickness of one of the surfaces.
static ExPolygons fill_surfaces_extract_expolygons(Surfaces &surfaces, std::initializer_list<SurfaceType> surface_types, double &thickness)
{
size_t cnt = 0;
for (const Surface &surface : surfaces)
if (std::find(surface_types.begin(), surface_types.end(), surface.surface_type) != surface_types.end()) {
++cnt;
thickness = surface.thickness;
}
if (cnt == 0)
return {};
ExPolygons out;
out.reserve(cnt);
for (Surface &surface : surfaces)
if (std::find(surface_types.begin(), surface_types.end(), surface.surface_type) != surface_types.end())
out.emplace_back(std::move(surface.expolygon));
return out;
}
struct ExpansionZone
{
ExPolygons expolygons;
Algorithm::RegionExpansionParameters parameters;
bool expanded_into = false;
};
// Cache for detecting bridge orientation and merging regions with overlapping expansions.
struct Bridge {
ExPolygon expolygon;
uint32_t group_id;
std::vector<Algorithm::RegionExpansionEx>::const_iterator bridge_expansion_begin;
std::optional<double> angle{std::nullopt};
};
// Group the bridge surfaces by overlaps.
uint32_t group_id(std::vector<Bridge> &bridges, uint32_t src_id) {
uint32_t group_id = bridges[src_id].group_id;
while (group_id != src_id) {
src_id = group_id;
group_id = bridges[src_id].group_id;
}
bridges[src_id].group_id = group_id;
return group_id;
};
std::vector<Bridge> get_grouped_bridges(
ExPolygons&& bridge_expolygons,
const std::vector<Algorithm::RegionExpansionEx>& bridge_expansions
) {
using namespace Algorithm;
std::vector<Bridge> result;
{
result.reserve(bridge_expansions.size());
uint32_t group_id = 0;
using std::move_iterator;
for (ExPolygon& expolygon : bridge_expolygons)
result.push_back({ std::move(expolygon), group_id ++, bridge_expansions.end() });
}
// Detect overlaps of bridge anchors inside their respective shell regions.
// bridge_expansions are sorted by boundary id and source id.
for (auto expansion_iterator = bridge_expansions.begin(); expansion_iterator != bridge_expansions.end();) {
auto boundary_region_begin = expansion_iterator;
auto boundary_region_end = std::find_if(
next(expansion_iterator),
bridge_expansions.end(),
[&](const RegionExpansionEx& expansion){
return expansion.boundary_id != expansion_iterator->boundary_id;
}
);
// Cache of bboxes per expansion boundary.
std::vector<BoundingBox> bounding_boxes;
bounding_boxes.reserve(std::distance(boundary_region_begin, boundary_region_end));
std::transform(
boundary_region_begin,
boundary_region_end,
std::back_inserter(bounding_boxes),
[](const RegionExpansionEx& expansion){
return get_extents(expansion.expolygon.contour);
}
);
// For each bridge anchor of the current source:
for (;expansion_iterator != boundary_region_end; ++expansion_iterator) {
auto candidate_iterator = std::next(expansion_iterator);
for (;candidate_iterator != boundary_region_end; ++candidate_iterator) {
const BoundingBox& current_bounding_box{
bounding_boxes[expansion_iterator - boundary_region_begin]
};
const BoundingBox& candidate_bounding_box{
bounding_boxes[candidate_iterator - boundary_region_begin]
};
if (
expansion_iterator->src_id != candidate_iterator->src_id
&& current_bounding_box.overlap(candidate_bounding_box)
// One may ignore holes, they are irrelevant for intersection test.
&& !intersection(expansion_iterator->expolygon.contour, candidate_iterator->expolygon.contour).empty()
) {
// The two bridge regions intersect. Give them the same (lower) group id.
uint32_t id = group_id(result, expansion_iterator->src_id);
uint32_t id2 = group_id(result, candidate_iterator->src_id);
if (id < id2)
result[id2].group_id = id;
else
result[id].group_id = id2;
}
}
}
}
return result;
}
void detect_bridge_directions(
const Algorithm::WaveSeeds& bridge_anchors,
std::vector<Bridge>& bridges,
const std::vector<ExpansionZone>& expansion_zones
) {
if (expansion_zones.empty()) {
throw std::runtime_error("At least one expansion zone must exist!");
}
auto it_bridge_anchor = bridge_anchors.begin();
for (uint32_t bridge_id = 0; bridge_id < uint32_t(bridges.size()); ++ bridge_id) {
Bridge &bridge = bridges[bridge_id];
Polygons anchor_areas;
int32_t last_anchor_id = -1;
for (; it_bridge_anchor != bridge_anchors.end() && it_bridge_anchor->src == bridge_id; ++ it_bridge_anchor) {
if (last_anchor_id != int(it_bridge_anchor->boundary)) {
last_anchor_id = int(it_bridge_anchor->boundary);
unsigned start_index{};
unsigned end_index{};
for (const ExpansionZone& expansion_zone: expansion_zones) {
end_index += expansion_zone.expolygons.size();
if (last_anchor_id < static_cast<int64_t>(end_index)) {
append(anchor_areas, to_polygons(expansion_zone.expolygons[last_anchor_id - start_index]));
break;
}
start_index += expansion_zone.expolygons.size();
}
}
}
Lines lines{to_lines(diff_pl(to_polylines(bridge.expolygon), expand(anchor_areas, float(SCALED_EPSILON))))};
auto [bridging_dir, unsupported_dist] = detect_bridging_direction(lines, to_polygons(bridge.expolygon));
bridge.angle = M_PI + std::atan2(bridging_dir.y(), bridging_dir.x());
if constexpr (false) {
coordf_t stroke_width = scale_(0.06);
BoundingBox bbox = get_extents(anchor_areas);
bbox.merge(get_extents(bridge.expolygon));
bbox.offset(scale_(1.));
::Slic3r::SVG
svg(debug_out_path(("bridge" + std::to_string(*bridge.angle) + "_" /* + std::to_string(this->layer()->bottom_z())*/).c_str()),
bbox);
svg.draw(bridge.expolygon, "cyan");
svg.draw(lines, "green", stroke_width);
svg.draw(anchor_areas, "red");
}
}
}
Surfaces merge_bridges(
std::vector<Bridge>& bridges,
const std::vector<Algorithm::RegionExpansionEx>& bridge_expansions,
const float closing_radius
) {
for (auto it = bridge_expansions.begin(); it != bridge_expansions.end(); ) {
bridges[it->src_id].bridge_expansion_begin = it;
uint32_t src_id = it->src_id;
for (++ it; it != bridge_expansions.end() && it->src_id == src_id; ++ it) ;
}
Surfaces result;
for (uint32_t bridge_id = 0; bridge_id < uint32_t(bridges.size()); ++ bridge_id) {
if (group_id(bridges, bridge_id) == bridge_id) {
// Head of the group.
Polygons acc;
for (uint32_t bridge_id2 = bridge_id; bridge_id2 < uint32_t(bridges.size()); ++ bridge_id2)
if (group_id(bridges, bridge_id2) == bridge_id) {
append(acc, to_polygons(std::move(bridges[bridge_id2].expolygon)));
auto it_bridge_expansion = bridges[bridge_id2].bridge_expansion_begin;
assert(it_bridge_expansion == bridge_expansions.end() || it_bridge_expansion->src_id == bridge_id2);
for (; it_bridge_expansion != bridge_expansions.end() && it_bridge_expansion->src_id == bridge_id2; ++ it_bridge_expansion)
append(acc, to_polygons(it_bridge_expansion->expolygon));
}
//FIXME try to be smart and pick the best bridging angle for all?
if (!bridges[bridge_id].angle) {
assert(false && "Bridge angle must be pre-calculated!");
}
Surface templ{ stBottomBridge, {} };
templ.bridge_angle = bridges[bridge_id].angle ? *bridges[bridge_id].angle : -1;
//NOTE: The current regularization of the shells can create small unasigned regions in the object (E.G. benchy)
// without the following closing operation, those regions will stay unfilled and cause small holes in the expanded surface.
// look for narrow_ensure_vertical_wall_thickness_region_radius filter.
ExPolygons final = closing_ex(acc, closing_radius);
// without safety offset, artifacts are generated (GH #2494)
// union_safety_offset_ex(acc)
for (ExPolygon &ex : final)
result.emplace_back(templ, std::move(ex));
}
}
return result;
}
struct ExpansionResult {
Algorithm::WaveSeeds anchors;
std::vector<Algorithm::RegionExpansionEx> expansions;
};
ExpansionResult expand_expolygons(
const ExPolygons& expolygons,
std::vector<ExpansionZone>& expansion_zones
) {
using namespace Algorithm;
WaveSeeds bridge_anchors;
std::vector<RegionExpansionEx> bridge_expansions;
unsigned processed_bridges_count = 0;
for (ExpansionZone& expansion_zone : expansion_zones) {
WaveSeeds seeds{wave_seeds(
expolygons,
expansion_zone.expolygons,
expansion_zone.parameters.tiny_expansion,
true
)};
std::vector<RegionExpansionEx> expansions{propagate_waves_ex(
seeds,
expansion_zone.expolygons,
expansion_zone.parameters
)};
for (WaveSeed &seed : seeds)
seed.boundary += processed_bridges_count;
for (RegionExpansionEx &expansion : expansions)
expansion.boundary_id += processed_bridges_count;
expansion_zone.expanded_into = ! expansions.empty();
append(bridge_anchors, std::move(seeds));
append(bridge_expansions, std::move(expansions));
processed_bridges_count += expansion_zone.expolygons.size();
}
return {bridge_anchors, bridge_expansions};
}
// Extract bridging surfaces from "surfaces", expand them into "shells" using expansion_params,
// detect bridges.
// Trim "shells" by the expanded bridges.
Surfaces expand_bridges_detect_orientations(
Surfaces &surfaces,
std::vector<ExpansionZone>& expansion_zones,
const float closing_radius
)
{
using namespace Slic3r::Algorithm;
double thickness;
ExPolygons bridge_expolygons = fill_surfaces_extract_expolygons(surfaces, {stBottomBridge}, thickness);
if (bridge_expolygons.empty())
return {};
// Calculate bridge anchors and their expansions in their respective shell region.
ExpansionResult expansion_result{expand_expolygons(
bridge_expolygons,
expansion_zones
)};
std::vector<Bridge> bridges{get_grouped_bridges(
std::move(bridge_expolygons),
expansion_result.expansions
)};
bridge_expolygons.clear();
std::sort(expansion_result.anchors.begin(), expansion_result.anchors.end(), Algorithm::lower_by_src_and_boundary);
detect_bridge_directions(expansion_result.anchors, bridges, expansion_zones);
// Merge the groups with the same group id, produce surfaces by merging source overhangs with their newly expanded anchors.
std::sort(expansion_result.expansions.begin(), expansion_result.expansions.end(), [](auto &l, auto &r) {
return l.src_id < r.src_id || (l.src_id == r.src_id && l.boundary_id < r.boundary_id);
});
Surfaces out{merge_bridges(bridges, expansion_result.expansions, closing_radius)};
// Clip by the expanded bridges.
for (ExpansionZone& expansion_zone : expansion_zones)
if (expansion_zone.expanded_into)
expansion_zone.expolygons = diff_ex(expansion_zone.expolygons, out);
return out;
}
Surfaces expand_merge_surfaces(
Surfaces &surfaces,
SurfaceType surface_type,
std::vector<ExpansionZone>& expansion_zones,
const float closing_radius,
const double bridge_angle = -1
)
{
using namespace Slic3r::Algorithm;
double thickness;
ExPolygons src = fill_surfaces_extract_expolygons(surfaces, {surface_type}, thickness);
if (src.empty())
return {};
unsigned processed_expolygons_count = 0;
std::vector<RegionExpansion> expansions;
for (ExpansionZone& expansion_zone : expansion_zones) {
std::vector<RegionExpansion> zone_expansions = propagate_waves(src, expansion_zone.expolygons, expansion_zone.parameters);
expansion_zone.expanded_into = !zone_expansions.empty();
for (RegionExpansion &expansion : zone_expansions)
expansion.boundary_id += processed_expolygons_count;
processed_expolygons_count += expansion_zone.expolygons.size();
append(expansions, std::move(zone_expansions));
}
std::vector<ExPolygon> expanded = merge_expansions_into_expolygons(std::move(src), std::move(expansions));
//NOTE: The current regularization of the shells can create small unasigned regions in the object (E.G. benchy)
// without the following closing operation, those regions will stay unfilled and cause small holes in the expanded surface.
// look for narrow_ensure_vertical_wall_thickness_region_radius filter.
expanded = closing_ex(expanded, closing_radius);
// Trim the zones by the expanded expolygons.
for (ExpansionZone& expansion_zone : expansion_zones)
if (expansion_zone.expanded_into)
expansion_zone.expolygons = diff_ex(expansion_zone.expolygons, expanded);
Surface templ{ surface_type, {} };
templ.bridge_angle = bridge_angle;
Surfaces out;
out.reserve(expanded.size());
for (auto &expoly : expanded)
out.emplace_back(templ, std::move(expoly));
return out;
}
void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Polygons *lower_layer_covered)
{
using namespace Slic3r::Algorithm;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("4_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Width of the perimeters.
float shell_width = 0;
float expansion_min = 0;
if (int num_perimeters = this->region().config().wall_loops; num_perimeters > 0) {
Flow external_perimeter_flow = this->flow(frExternalPerimeter);
Flow perimeter_flow = this->flow(frPerimeter);
shell_width = 0.5f * external_perimeter_flow.scaled_width() + external_perimeter_flow.scaled_spacing();
shell_width += perimeter_flow.scaled_spacing() * (num_perimeters - 1);
expansion_min = perimeter_flow.scaled_spacing();
} else {
// TODO: Maybe there is better solution when printing with zero perimeters, but this works reasonably well, given the situation
shell_width = float(SCALED_EPSILON);
expansion_min = float(SCALED_EPSILON);;
}
// Scaled expansions of the respective external surfaces.
float expansion_top = shell_width * sqrt(2.);
float expansion_bottom = expansion_top;
float expansion_bottom_bridge = expansion_top;
// Expand by waves of expansion_step size (expansion_step is scaled), but with no more steps than max_nr_expansion_steps.
const float expansion_step = scaled<float>(0.1);
// Don't take more than max_nr_steps for small expansion_step.
static constexpr const size_t max_nr_expansion_steps = 5;
// Radius (with added epsilon) to absorb empty regions emering from regularization of ensuring, viz const float narrow_ensure_vertical_wall_thickness_region_radius = 0.5f * 0.65f * min_perimeter_infill_spacing;
const float closing_radius = 0.55f * 0.65f * 1.05f * this->flow(frSolidInfill).scaled_spacing();
// Expand the top / bottom / bridge surfaces into the shell thickness solid infills.
double layer_thickness;
ExPolygons shells = union_ex(fill_surfaces_extract_expolygons(this->fill_surfaces.surfaces, { stInternalSolid }, layer_thickness));
ExPolygons sparse = union_ex(fill_surfaces_extract_expolygons(this->fill_surfaces.surfaces, {stInternal}, layer_thickness));
ExPolygons top_expolygons = union_ex(fill_surfaces_extract_expolygons(this->fill_surfaces.surfaces, {stTop}, layer_thickness));
const auto expansion_params_into_sparse_infill = RegionExpansionParameters::build(expansion_min, expansion_step, max_nr_expansion_steps);
const auto expansion_params_into_solid_infill = RegionExpansionParameters::build(expansion_bottom_bridge, expansion_step, max_nr_expansion_steps);
std::vector<ExpansionZone> expansion_zones{
ExpansionZone{std::move(shells), expansion_params_into_solid_infill},
ExpansionZone{std::move(sparse), expansion_params_into_sparse_infill},
ExpansionZone{std::move(top_expolygons), expansion_params_into_solid_infill},
};
SurfaceCollection bridges;
{
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges. layer" << this->layer()->print_z;
const double custom_angle = this->region().config().bridge_angle.value;
bridges.surfaces = custom_angle > 0 ?
expand_merge_surfaces(this->fill_surfaces.surfaces, stBottomBridge, expansion_zones, closing_radius, Geometry::deg2rad(custom_angle)) :
expand_bridges_detect_orientations(this->fill_surfaces.surfaces, expansion_zones, closing_radius);
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges - done";
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-after-grouping-%d.svg", iRun++).c_str(), true);
}
#endif
}
this->fill_surfaces.remove_types({stTop});
{
Surface top_templ(stTop, {});
top_templ.thickness = layer_thickness;
this->fill_surfaces.append(std::move(expansion_zones.back().expolygons), top_templ);
}
expansion_zones.pop_back();
expansion_zones.at(0).parameters = RegionExpansionParameters::build(expansion_bottom, expansion_step, max_nr_expansion_steps);
Surfaces bottoms = expand_merge_surfaces(this->fill_surfaces.surfaces, stBottom, expansion_zones, closing_radius);
expansion_zones.at(0).parameters = RegionExpansionParameters::build(expansion_top, expansion_step, max_nr_expansion_steps);
Surfaces tops = expand_merge_surfaces(this->fill_surfaces.surfaces, stTop, expansion_zones, closing_radius);
// turn too small internal regions into solid regions according to the user setting
if (!this->layer()->object()->print()->config().spiral_mode && this->region().config().sparse_infill_density.value > 0) {
// scaling an area requires two calls!
double min_area = scale_(scale_(this->region().config().minimum_sparse_infill_area.value));
ExPolygons small_regions{};
expansion_zones[1].expolygons.erase(std::remove_if(expansion_zones[1].expolygons.begin(), expansion_zones[1].expolygons.end(), [min_area, &small_regions](ExPolygon& ex_polygon) {
if (ex_polygon.area() <= min_area) {
small_regions.push_back(ex_polygon);
return true;
}
return false;
}), expansion_zones[1].expolygons.end());
if (!small_regions.empty()) {
expansion_zones[0].expolygons = union_ex(expansion_zones[0].expolygons, small_regions);
}
}
// this->fill_surfaces.remove_types({ stBottomBridge, stBottom, stTop, stInternal, stInternalSolid });
this->fill_surfaces.clear();
unsigned zones_expolygons_count = 0;
for (const ExpansionZone& zone : expansion_zones)
zones_expolygons_count += zone.expolygons.size();
reserve_more(this->fill_surfaces.surfaces, zones_expolygons_count + bridges.size() + bottoms.size() + tops.size());
{
Surface solid_templ(stInternalSolid, {});
solid_templ.thickness = layer_thickness;
this->fill_surfaces.append(std::move(expansion_zones[0].expolygons), solid_templ);
}
{
Surface sparse_templ(stInternal, {});
sparse_templ.thickness = layer_thickness;
this->fill_surfaces.append(std::move(expansion_zones[1].expolygons), sparse_templ);
}
this->fill_surfaces.append(std::move(bridges.surfaces));
this->fill_surfaces.append(std::move(bottoms));
this->fill_surfaces.append(std::move(tops));
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("4_process_external_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
#else
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
//#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
#define EXTERNAL_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
void LayerRegion::process_external_surfaces(const Layer *lower_layer, const Polygons *lower_layer_covered)
{
const bool has_infill = this->region().config().sparse_infill_density.value > 0.;
//BBS
auto nozzle_diameter = this->region().nozzle_dmr_avg(this->layer()->object()->print()->config());
const float margin = float(scale_(EXTERNAL_INFILL_MARGIN));
const float bridge_margin = std::min(float(scale_(BRIDGE_INFILL_MARGIN)), float(scale_(nozzle_diameter * BRIDGE_INFILL_MARGIN / 0.4)));
// BBS
const PrintObjectConfig& object_config = this->layer()->object()->config();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// 1) Collect bottom and bridge surfaces, each of them grown by a fixed 3mm offset
// for better anchoring.
// Bottom surfaces, grown.
Surfaces bottom;
// Bridge surfaces, initialy not grown.
Surfaces bridges;
// Top surfaces, grown.
Surfaces top;
// Internal surfaces, not grown.
Surfaces internal;
// Areas, where an infill of various types (top, bottom, bottom bride, sparse, void) could be placed.
Polygons fill_boundaries = to_polygons(this->fill_expolygons);
Polygons lower_layer_covered_tmp;
// Collect top surfaces and internal surfaces.
// Collect fill_boundaries: If we're slicing with no infill, we can't extend external surfaces over non-existent infill.
// This loop destroys the surfaces (aliasing this->fill_surfaces.surfaces) by moving into top/internal/fill_boundaries!
{
// Voids are sparse infills if infill rate is zero.
Polygons voids;
double max_grid_area = -1;
if (this->layer()->lower_layer != nullptr)
max_grid_area = this->layer()->lower_layer->get_sparse_infill_max_void_area();
for (const Surface &surface : this->fill_surfaces.surfaces) {
if (surface.is_top()) {
// Collect the top surfaces, inflate them and trim them by the bottom surfaces.
// This gives the priority to bottom surfaces.
if (max_grid_area < 0 || surface.expolygon.area() < max_grid_area)
surfaces_append(top, offset_ex(surface.expolygon, margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
else
//BBS: Don't need to expand too much in this situation. Expand 3mm to eliminate hole and 1mm for contour
surfaces_append(top, intersection_ex(offset(surface.expolygon.contour, margin / 3.0, EXTERNAL_SURFACES_OFFSET_PARAMETERS),
offset_ex(surface.expolygon, margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS)), surface);
} else if (surface.surface_type == stBottom || (surface.surface_type == stBottomBridge && lower_layer == nullptr)) {
// Grown by 3mm.
surfaces_append(bottom, offset_ex(surface.expolygon, margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS), surface);
} else if (surface.surface_type == stBottomBridge) {
if (! surface.empty())
bridges.emplace_back(surface);
}
if (surface.is_internal()) {
assert(surface.surface_type == stInternal || surface.surface_type == stInternalSolid);
if (! has_infill && lower_layer != nullptr)
polygons_append(voids, surface.expolygon);
internal.emplace_back(std::move(surface));
}
}
if (! has_infill && lower_layer != nullptr && ! voids.empty()) {
// Remove voids from fill_boundaries, that are not supported by the layer below.
if (lower_layer_covered == nullptr) {
lower_layer_covered = &lower_layer_covered_tmp;
lower_layer_covered_tmp = to_polygons(lower_layer->lslices);
}
if (! lower_layer_covered->empty())
voids = diff(voids, *lower_layer_covered);
fill_boundaries = diff(fill_boundaries, voids);
}
}
#if 0
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-before-grouping-%d.svg", iRun ++), true);
}
#endif
if (bridges.empty())
{
fill_boundaries = union_safety_offset(fill_boundaries);
} else
{
// 1) Calculate the inflated bridge regions, each constrained to its island.
ExPolygons fill_boundaries_ex = union_safety_offset_ex(fill_boundaries);
std::vector<Polygons> bridges_grown;
std::vector<BoundingBox> bridge_bboxes;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
SVG svg(debug_out_path("3_process_external_surfaces-fill_regions-%d.svg", iRun ++).c_str(), get_extents(fill_boundaries_ex));
svg.draw(fill_boundaries_ex);
svg.draw_outline(fill_boundaries_ex, "black", "blue", scale_(0.05));
svg.Close();
}
// export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
{
// Bridge expolygons, grown, to be tested for intersection with other bridge regions.
std::vector<BoundingBox> fill_boundaries_ex_bboxes = get_extents_vector(fill_boundaries_ex);
bridges_grown.reserve(bridges.size());
bridge_bboxes.reserve(bridges.size());
for (size_t i = 0; i < bridges.size(); ++ i) {
// Find the island of this bridge.
const Point pt = bridges[i].expolygon.contour.points.front();
int idx_island = -1;
for (int j = 0; j < int(fill_boundaries_ex.size()); ++ j)
if (fill_boundaries_ex_bboxes[j].contains(pt) &&
fill_boundaries_ex[j].contains(pt)) {
idx_island = j;
break;
}
// Grown by 3mm.
//BBS: eliminate too narrow area to avoid generating bridge on top layer when wall loop is 1
//Polygons polys = offset(bridges[i].expolygon, bridge_margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS);
Polygons polys = offset2({ bridges[i].expolygon }, -scale_(nozzle_diameter * 0.1), bridge_margin, EXTERNAL_SURFACES_OFFSET_PARAMETERS);
if (idx_island == -1) {
BOOST_LOG_TRIVIAL(trace) << "Bridge did not fall into the source region!";
} else {
// Found an island, to which this bridge region belongs. Trim it,
polys = intersection(polys, fill_boundaries_ex[idx_island]);
}
bridge_bboxes.push_back(get_extents(polys));
bridges_grown.push_back(std::move(polys));
}
}
// 2) Group the bridge surfaces by overlaps.
std::vector<size_t> bridge_group(bridges.size(), (size_t)-1);
size_t n_groups = 0;
for (size_t i = 0; i < bridges.size(); ++ i) {
// A grup id for this bridge.
size_t group_id = (bridge_group[i] == size_t(-1)) ? (n_groups ++) : bridge_group[i];
bridge_group[i] = group_id;
// For all possibly overlaping bridges:
for (size_t j = i + 1; j < bridges.size(); ++ j) {
if (! bridge_bboxes[i].overlap(bridge_bboxes[j]))
continue;
if (intersection(bridges_grown[i], bridges_grown[j]).empty())
continue;
// The two bridge regions intersect. Give them the same group id.
if (bridge_group[j] != size_t(-1)) {
// The j'th bridge has been merged with some other bridge before.
size_t group_id_new = bridge_group[j];
for (size_t k = 0; k < j; ++ k)
if (bridge_group[k] == group_id)
bridge_group[k] = group_id_new;
group_id = group_id_new;
}
bridge_group[j] = group_id;
}
}
// 3) Merge the groups with the same group id, detect bridges.
{
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges. layer" << this->layer()->print_z << ", bridge groups: " << n_groups;
for (size_t group_id = 0; group_id < n_groups; ++ group_id) {
size_t n_bridges_merged = 0;
size_t idx_last = (size_t)-1;
for (size_t i = 0; i < bridges.size(); ++ i) {
if (bridge_group[i] == group_id) {
++ n_bridges_merged;
idx_last = i;
}
}
if (n_bridges_merged == 0)
// This group has no regions assigned as these were moved into another group.
continue;
// Collect the initial ungrown regions and the grown polygons.
ExPolygons initial;
Polygons grown;
for (size_t i = 0; i < bridges.size(); ++ i) {
if (bridge_group[i] != group_id)
continue;
initial.push_back(std::move(bridges[i].expolygon));
polygons_append(grown, bridges_grown[i]);
}
// detect bridge direction before merging grown surfaces otherwise adjacent bridges
// would get merged into a single one while they need different directions
// also, supply the original expolygon instead of the grown one, because in case
// of very thin (but still working) anchors, the grown expolygon would go beyond them
double custom_angle = Geometry::deg2rad(this->region().config().bridge_angle.value);
if (custom_angle > 0.0) {
bridges[idx_last].bridge_angle = custom_angle;
} else {
auto [bridging_dir, unsupported_dist] = detect_bridging_direction(to_polygons(initial), to_polygons(lower_layer->lslices));
bridges[idx_last].bridge_angle = PI + std::atan2(bridging_dir.y(), bridging_dir.x());
}
/*
BridgeDetector bd(initial, lower_layer->lslices, this->bridging_flow(frInfill, object_config.thick_bridges).scaled_width());
#ifdef SLIC3R_DEBUG
printf("Processing bridge at layer %zu:\n", this->layer()->id());
#endif
//BBS: use 0 as custom angle to enable auto detection all the time
double custom_angle = Geometry::deg2rad(this->region().config().bridge_angle.value);
if(custom_angle > 0)
bridges[idx_last].bridge_angle = custom_angle;
else if (bd.detect_angle(custom_angle)) {
bridges[idx_last].bridge_angle = bd.angle;
if (this->layer()->object()->has_support()) {
// polygons_append(this->bridged, bd.coverage());
append(this->unsupported_bridge_edges, bd.unsupported_edges());
}
} else if (custom_angle > 0) {
// Bridge was not detected (likely it is only supported at one side). Still it is a surface filled in
// using a bridging flow, therefore it makes sense to respect the custom bridging direction.
bridges[idx_last].bridge_angle = custom_angle;
}
*/
// without safety offset, artifacts are generated (GH #2494)
surfaces_append(bottom, union_safety_offset_ex(grown), bridges[idx_last]);
}
fill_boundaries = to_polygons(fill_boundaries_ex);
BOOST_LOG_TRIVIAL(trace) << "Processing external surface, detecting bridges - done";
}
#if 0
{
static int iRun = 0;
bridges.export_to_svg(debug_out_path("bridges-after-grouping-%d.svg", iRun ++), true);
}
#endif
}
Surfaces new_surfaces;
{
// Merge top and bottom in a single collection.
surfaces_append(top, std::move(bottom));
// Intersect the grown surfaces with the actual fill boundaries.
Polygons bottom_polygons = to_polygons(bottom);
for (size_t i = 0; i < top.size(); ++ i) {
Surface &s1 = top[i];
if (s1.empty())
continue;
Polygons polys;
polygons_append(polys, to_polygons(std::move(s1)));
for (size_t j = i + 1; j < top.size(); ++ j) {
Surface &s2 = top[j];
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
polygons_append(polys, to_polygons(std::move(s2)));
s2.clear();
}
}
if (s1.is_top())
// Trim the top surfaces by the bottom surfaces. This gives the priority to the bottom surfaces.
polys = diff(polys, bottom_polygons);
surfaces_append(
new_surfaces,
// Don't use a safety offset as fill_boundaries were already united using the safety offset.
intersection_ex(polys, fill_boundaries),
s1);
}
}
// Subtract the new top surfaces from the other non-top surfaces and re-add them.
Polygons new_polygons = to_polygons(new_surfaces);
for (size_t i = 0; i < internal.size(); ++ i) {
Surface &s1 = internal[i];
if (s1.empty())
continue;
Polygons polys;
polygons_append(polys, to_polygons(std::move(s1)));
for (size_t j = i + 1; j < internal.size(); ++ j) {
Surface &s2 = internal[j];
if (! s2.empty() && surfaces_could_merge(s1, s2)) {
polygons_append(polys, to_polygons(std::move(s2)));
s2.clear();
}
}
ExPolygons new_expolys = diff_ex(polys, new_polygons);
polygons_append(new_polygons, to_polygons(new_expolys));
surfaces_append(new_surfaces, std::move(new_expolys), s1);
}
this->fill_surfaces.surfaces = std::move(new_surfaces);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
#endif
void LayerRegion::prepare_fill_surfaces()
{
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-initial");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
/* Note: in order to make the psPrepareInfill step idempotent, we should never
alter fill_surfaces boundaries on which our idempotency relies since that's
the only meaningful information returned by psPerimeters. */
bool spiral_mode = this->layer()->object()->print()->config().spiral_mode;
// if no solid layers are requested, turn top/bottom surfaces to internal
if (! spiral_mode && this->region().config().top_shell_layers == 0) {
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.is_top())
//BBS
//surface.surface_type = this->layer()->object()->config().infill_only_where_needed ? stInternalVoid : stInternal;
surface.surface_type = PrintObject::infill_only_where_needed ? stInternalVoid : stInternal;
}
if (this->region().config().bottom_shell_layers == 0) {
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.is_bottom()) // (surface.surface_type == stBottom)
surface.surface_type = stInternal;
}
if (!spiral_mode && fabs(this->region().config().sparse_infill_density.value - 100.) < EPSILON) {
// Turn all internal sparse infill into solid infill, if sparse_infill_density is 100%
for (Surface &surface : this->fill_surfaces.surfaces)
if (surface.surface_type == stInternal)
surface.surface_type = stInternalSolid;
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
export_region_slices_to_svg_debug("2_prepare_fill_surfaces-final");
export_region_fill_surfaces_to_svg_debug("2_prepare_fill_surfaces-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
double LayerRegion::infill_area_threshold() const
{
double ss = this->flow(frSolidInfill).scaled_spacing();
return ss*ss;
}
void LayerRegion::trim_surfaces(const Polygons &trimming_polygons)
{
#ifndef NDEBUG
for (const Surface &surface : this->slices.surfaces)
assert(surface.surface_type == stInternal);
#endif /* NDEBUG */
this->slices.set(intersection_ex(this->slices.surfaces, trimming_polygons), stInternal);
}
void LayerRegion::elephant_foot_compensation_step(const float elephant_foot_compensation_perimeter_step, const Polygons &trimming_polygons)
{
#ifndef NDEBUG
for (const Surface &surface : this->slices.surfaces)
assert(surface.surface_type == stInternal);
#endif /* NDEBUG */
Polygons tmp = intersection(this->slices.surfaces, trimming_polygons);
append(tmp, diff(this->slices.surfaces, opening(this->slices.surfaces, elephant_foot_compensation_perimeter_step)));
this->slices.set(union_ex(tmp), stInternal);
}
void LayerRegion::export_region_slices_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (Surfaces::const_iterator surface = this->slices.surfaces.begin(); surface != this->slices.surfaces.end(); ++surface)
svg.draw(surface->expolygon, surface_type_to_color_name(surface->surface_type), transparency);
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
svg.draw(surface->expolygon.lines(), surface_type_to_color_name(surface->surface_type));
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_slices_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_slices_to_svg(debug_out_path("LayerRegion-slices-%s-%d.svg", name, idx ++).c_str());
}
void LayerRegion::export_region_fill_surfaces_to_svg(const char *path) const
{
BoundingBox bbox;
for (Surfaces::const_iterator surface = this->fill_surfaces.surfaces.begin(); surface != this->fill_surfaces.surfaces.end(); ++surface)
bbox.merge(get_extents(surface->expolygon));
Point legend_size = export_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (const Surface &surface : this->fill_surfaces.surfaces) {
svg.draw(surface.expolygon, surface_type_to_color_name(surface.surface_type), transparency);
svg.draw_outline(surface.expolygon, "black", "blue", scale_(0.05));
}
export_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
// Export to "out/LayerRegion-name-%d.svg" with an increasing index with every export.
void LayerRegion::export_region_fill_surfaces_to_svg_debug(const char *name) const
{
static std::map<std::string, size_t> idx_map;
size_t &idx = idx_map[name];
this->export_region_fill_surfaces_to_svg(debug_out_path("LayerRegion-fill_surfaces-%s-%d.svg", name, idx ++).c_str());
}
void LayerRegion::simplify_entity_collection(ExtrusionEntityCollection* entity_collection)
{
for (size_t i = 0; i < entity_collection->entities.size(); i++) {
if (ExtrusionEntityCollection* collection = dynamic_cast<ExtrusionEntityCollection*>(entity_collection->entities[i]))
this->simplify_entity_collection(collection);
else if (ExtrusionPath* path = dynamic_cast<ExtrusionPath*>(entity_collection->entities[i]))
this->simplify_path(path);
else if (ExtrusionMultiPath* multipath = dynamic_cast<ExtrusionMultiPath*>(entity_collection->entities[i]))
this->simplify_multi_path(multipath);
else if (ExtrusionLoop* loop = dynamic_cast<ExtrusionLoop*>(entity_collection->entities[i]))
this->simplify_loop(loop);
else
throw Slic3r::InvalidArgument("Invalid extrusion entity supplied to simplify_entity_collection()");
}
}
void LayerRegion::simplify_path(ExtrusionPath* path)
{
const auto print_config = this->layer()->object()->print()->config();
const bool spiral_mode = print_config.spiral_mode;
const bool enable_arc_fitting = print_config.enable_arc_fitting;
const auto scaled_resolution = scaled<double>(print_config.resolution.value);
if (enable_arc_fitting &&
!spiral_mode) {
if (path->role() == erInternalInfill)
path->simplify_by_fitting_arc(SCALED_SPARSE_INFILL_RESOLUTION);
else
path->simplify_by_fitting_arc(scaled_resolution);
} else {
path->simplify(scaled_resolution);
}
}
void LayerRegion::simplify_multi_path(ExtrusionMultiPath* multipath)
{
const auto print_config = this->layer()->object()->print()->config();
const bool spiral_mode = print_config.spiral_mode;
const bool enable_arc_fitting = print_config.enable_arc_fitting;
const auto scaled_resolution = scaled<double>(print_config.resolution.value);
for (size_t i = 0; i < multipath->paths.size(); ++i) {
if (enable_arc_fitting &&
!spiral_mode) {
if (multipath->paths[i].role() == erInternalInfill)
multipath->paths[i].simplify_by_fitting_arc(SCALED_SPARSE_INFILL_RESOLUTION);
else
multipath->paths[i].simplify_by_fitting_arc(scaled_resolution);
} else {
multipath->paths[i].simplify(scaled_resolution);
}
}
}
void LayerRegion::simplify_loop(ExtrusionLoop* loop)
{
const auto print_config = this->layer()->object()->print()->config();
const bool spiral_mode = print_config.spiral_mode;
const bool enable_arc_fitting = print_config.enable_arc_fitting;
const auto scaled_resolution = scaled<double>(print_config.resolution.value);
for (size_t i = 0; i < loop->paths.size(); ++i) {
if (enable_arc_fitting &&
!spiral_mode) {
if (loop->paths[i].role() == erInternalInfill)
loop->paths[i].simplify_by_fitting_arc(SCALED_SPARSE_INFILL_RESOLUTION);
else
loop->paths[i].simplify_by_fitting_arc(scaled_resolution);
} else {
loop->paths[i].simplify(scaled_resolution);
}
}
}
}