orcaslicer/src/libslic3r/Fill/FillAdaptive.cpp

223 lines
7.8 KiB
C++

#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Surface.hpp"
#include "../Geometry.hpp"
#include "../AABBTreeIndirect.hpp"
#include "FillAdaptive.hpp"
namespace Slic3r {
void FillAdaptive::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out)
{
std::vector<Polylines> infill_polylines(3);
this->generate_polylines(this->adapt_fill_octree->root_cube.get(), this->z, this->adapt_fill_octree->origin, infill_polylines);
for (Polylines &infill_polyline : infill_polylines) {
// Crop all polylines
infill_polyline = intersection_pl(infill_polyline, to_polygons(expolygon));
polylines_out.insert(polylines_out.end(), infill_polyline.begin(), infill_polyline.end());
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRuna = 0;
BoundingBox bbox_svg = this->bounding_box;
{
::Slic3r::SVG svg(debug_out_path("FillAdaptive-%d.svg", iRuna), bbox_svg);
for (const Polyline &polyline : polylines_out)
{
for (const Line &line : polyline.lines())
{
Point from = line.a;
Point to = line.b;
Point diff = to - from;
float shrink_length = scale_(0.4);
float line_slope = (float)diff.y() / diff.x();
float shrink_x = shrink_length / (float)std::sqrt(1.0 + (line_slope * line_slope));
float shrink_y = line_slope * shrink_x;
to.x() -= shrink_x;
to.y() -= shrink_y;
from.x() += shrink_x;
from.y() += shrink_y;
svg.draw(Line(from, to));
}
}
}
iRuna++;
}
#endif /* SLIC3R_DEBUG */
}
void FillAdaptive::generate_polylines(
FillAdaptive_Internal::Cube *cube,
double z_position,
const Vec3d &origin,
std::vector<Polylines> &polylines_out)
{
using namespace FillAdaptive_Internal;
if(cube == nullptr)
{
return;
}
double z_diff = std::abs(z_position - cube->center.z());
if (z_diff > cube->properties.height / 2)
{
return;
}
if (z_diff < cube->properties.line_z_distance)
{
Point from(
scale_((cube->properties.diagonal_length / 2) * (cube->properties.line_z_distance - z_diff) / cube->properties.line_z_distance),
scale_(cube->properties.line_xy_distance - ((z_position - (cube->center.z() - cube->properties.line_z_distance)) / sqrt(2))));
Point to(-from.x(), from.y());
// Relative to cube center
float rotation_angle = Geometry::deg2rad(120.0);
for (int i = 0; i < polylines_out.size(); i++)
{
Vec3d offset = cube->center - origin;
Point from_abs(from), to_abs(to);
from_abs.x() += scale_(offset.x());
from_abs.y() += scale_(offset.y());
to_abs.x() += scale_(offset.x());
to_abs.y() += scale_(offset.y());
// polylines_out[i].push_back(Polyline(from_abs, to_abs));
this->merge_polylines(polylines_out[i], Line(from_abs, to_abs));
from.rotate(rotation_angle);
to.rotate(rotation_angle);
}
}
for(const std::unique_ptr<Cube> &child : cube->children)
{
generate_polylines(child.get(), z_position, origin, polylines_out);
}
}
void FillAdaptive::merge_polylines(Polylines &polylines, const Line &new_line)
{
int eps = scale_(0.10);
bool modified = false;
for (Polyline &polyline : polylines)
{
if (std::abs(new_line.a.x() - polyline.points[1].x()) < eps && std::abs(new_line.a.y() - polyline.points[1].y()) < eps)
{
polyline.points[1].x() = new_line.b.x();
polyline.points[1].y() = new_line.b.y();
modified = true;
}
if (std::abs(new_line.b.x() - polyline.points[0].x()) < eps && std::abs(new_line.b.y() - polyline.points[0].y()) < eps)
{
polyline.points[0].x() = new_line.a.x();
polyline.points[0].y() = new_line.a.y();
modified = true;
}
}
if(!modified)
{
polylines.emplace_back(Polyline(new_line.a, new_line.b));
}
}
std::unique_ptr<FillAdaptive_Internal::Octree> FillAdaptive::build_octree(
TriangleMesh &triangleMesh,
coordf_t line_spacing,
const BoundingBoxf3 &printer_volume,
const Vec3d &cube_center)
{
using namespace FillAdaptive_Internal;
if(line_spacing <= 0)
{
return nullptr;
}
// The furthest point from center of bed.
double furthest_point = std::sqrt(((printer_volume.size()[0] * printer_volume.size()[0]) / 4.0) +
((printer_volume.size()[1] * printer_volume.size()[1]) / 4.0) +
(printer_volume.size()[2] * printer_volume.size()[2]));
double max_cube_edge_length = furthest_point * 2;
std::vector<CubeProperties> cubes_properties;
for (double edge_length = (line_spacing * 2); edge_length < (max_cube_edge_length * 2); edge_length *= 2)
{
CubeProperties props{};
props.edge_length = edge_length;
props.height = edge_length * sqrt(3);
props.diagonal_length = edge_length * sqrt(2);
props.line_z_distance = edge_length / sqrt(3);
props.line_xy_distance = edge_length / sqrt(6);
cubes_properties.push_back(props);
}
if (triangleMesh.its.vertices.empty())
{
triangleMesh.require_shared_vertices();
}
Vec3d rotation = Vec3d(Geometry::deg2rad(225.0), Geometry::deg2rad(215.264), Geometry::deg2rad(30.0));
Transform3d rotation_matrix = Geometry::assemble_transform(Vec3d::Zero(), rotation, Vec3d::Ones(), Vec3d::Ones());
AABBTreeIndirect::Tree3f aabbTree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(triangleMesh.its.vertices, triangleMesh.its.indices);
std::unique_ptr<Octree> octree = std::unique_ptr<Octree>(
new Octree{std::unique_ptr<Cube>(new Cube{cube_center, cubes_properties.size() - 1, cubes_properties.back()}), cube_center});
FillAdaptive::expand_cube(octree->root_cube.get(), cubes_properties, rotation_matrix, aabbTree, triangleMesh);
return octree;
}
void FillAdaptive::expand_cube(
FillAdaptive_Internal::Cube *cube,
const std::vector<FillAdaptive_Internal::CubeProperties> &cubes_properties,
const Transform3d &rotation_matrix,
const AABBTreeIndirect::Tree3f &distanceTree,
const TriangleMesh &triangleMesh)
{
using namespace FillAdaptive_Internal;
if (cube == nullptr || cube->depth == 0)
{
return;
}
std::vector<Vec3d> child_centers = {
Vec3d(-1, -1, -1), Vec3d( 1, -1, -1), Vec3d(-1, 1, -1), Vec3d(-1, -1, 1),
Vec3d( 1, 1, 1), Vec3d(-1, 1, 1), Vec3d( 1, -1, 1), Vec3d( 1, 1, -1)
};
double cube_radius_squared = (cube->properties.height * cube->properties.height) / 16;
for (const Vec3d &child_center : child_centers) {
Vec3d child_center_transformed = cube->center + rotation_matrix * (child_center * (cube->properties.edge_length / 4));
if(AABBTreeIndirect::is_any_triangle_in_radius(triangleMesh.its.vertices, triangleMesh.its.indices, distanceTree, child_center_transformed, cube_radius_squared)) {
cube->children.push_back(std::unique_ptr<Cube>(new Cube{child_center_transformed, cube->depth - 1, cubes_properties[cube->depth - 1]}));
FillAdaptive::expand_cube(cube->children.back().get(), cubes_properties, rotation_matrix, distanceTree, triangleMesh);
}
}
}
} // namespace Slic3r