orcaslicer/src/libslic3r/GCodeWriter.hpp

296 lines
13 KiB
C++

#ifndef slic3r_GCodeWriter_hpp_
#define slic3r_GCodeWriter_hpp_
#include "libslic3r.h"
#include <string>
#include <charconv>
#include "Extruder.hpp"
#include "Point.hpp"
#include "PrintConfig.hpp"
#include "GCode/CoolingBuffer.hpp"
namespace Slic3r {
class GCodeWriter {
public:
GCodeConfig config;
bool multiple_extruders;
GCodeWriter() :
multiple_extruders(false), m_extruder(nullptr),
m_single_extruder_multi_material(false),
m_last_acceleration(0), m_max_acceleration(0),m_last_travel_acceleration(0), m_max_travel_acceleration(0),
m_last_jerk(0), m_max_jerk(0),
/*m_last_bed_temperature(0), */m_last_bed_temperature_reached(true),
m_lifted(0),
m_to_lift(0),
m_to_lift_type(LiftType::NormalLift),
m_current_speed(3600), m_is_first_layer(true)
{}
Extruder* extruder() { return m_extruder; }
const Extruder* extruder() const { return m_extruder; }
void apply_print_config(const PrintConfig &print_config);
// Extruders are expected to be sorted in an increasing order.
void set_extruders(std::vector<unsigned int> extruder_ids);
const std::vector<Extruder>& extruders() const { return m_extruders; }
std::vector<unsigned int> extruder_ids() const {
std::vector<unsigned int> out;
out.reserve(m_extruders.size());
for (const Extruder &e : m_extruders)
out.push_back(e.id());
return out;
}
std::string preamble();
std::string postamble() const;
std::string set_temperature(unsigned int temperature, bool wait = false, int tool = -1) const;
std::string set_bed_temperature(int temperature, bool wait = false);
std::string set_chamber_temperature(int temperature, bool wait = false);
std::string set_print_acceleration(unsigned int acceleration) { return set_acceleration_internal(Acceleration::Print, acceleration); }
std::string set_travel_acceleration(unsigned int acceleration) { return set_acceleration_internal(Acceleration::Travel, acceleration); }
std::string set_jerk_xy(double jerk);
// Orca: set acceleration and jerk in one command for Klipper
std::string set_accel_and_jerk(unsigned int acceleration, double jerk);
std::string set_pressure_advance(double pa) const;
std::string reset_e(bool force = false);
std::string update_progress(unsigned int num, unsigned int tot, bool allow_100 = false) const;
// return false if this extruder was already selected
bool need_toolchange(unsigned int extruder_id) const
{ return m_extruder == nullptr || m_extruder->id() != extruder_id; }
std::string set_extruder(unsigned int extruder_id)
{ return this->need_toolchange(extruder_id) ? this->toolchange(extruder_id) : ""; }
// Prefix of the toolchange G-code line, to be used by the CoolingBuffer to separate sections of the G-code
// printed with the same extruder.
std::string toolchange_prefix() const;
std::string toolchange(unsigned int extruder_id);
std::string set_speed(double F, const std::string &comment = std::string(), const std::string &cooling_marker = std::string());
// SoftFever NOTE: the returned speed is mm/minute
double get_current_speed() const { return m_current_speed;}
std::string travel_to_xy(const Vec2d &point, const std::string &comment = std::string());
std::string travel_to_xyz(const Vec3d &point, const std::string &comment = std::string());
std::string travel_to_z(double z, const std::string &comment = std::string());
bool will_move_z(double z) const;
std::string extrude_to_xy(const Vec2d &point, double dE, const std::string &comment = std::string(), bool force_no_extrusion = false);
//BBS: generate G2 or G3 extrude which moves by arc
std::string extrude_arc_to_xy(const Vec2d &point, const Vec2d &center_offset, double dE, const bool is_ccw, const std::string &comment = std::string(), bool force_no_extrusion = false);
std::string extrude_to_xyz(const Vec3d &point, double dE, const std::string &comment = std::string(), bool force_no_extrusion = false);
std::string retract(bool before_wipe = false);
std::string retract_for_toolchange(bool before_wipe = false);
std::string unretract();
std::string lift(LiftType lift_type = LiftType::NormalLift, bool spiral_vase = false);
std::string unlift();
Vec3d get_position() const { return m_pos; }
void set_position(const Vec3d& in) { m_pos = in; }
double get_zhop() const { return m_lifted; }
//BBS: set offset for gcode writer
void set_xy_offset(double x, double y) { m_x_offset = x; m_y_offset = y; }
Vec2f get_xy_offset() { return Vec2f{m_x_offset, m_y_offset}; };
// To be called by the CoolingBuffer from another thread.
static std::string set_fan(const GCodeFlavor gcode_flavor, unsigned int speed);
// To be called by the main thread. It always emits the G-code, it does not remember the previous state.
// Keeping the state is left to the CoolingBuffer, which runs asynchronously on another thread.
std::string set_fan(unsigned int speed) const;
//BBS: set additional fan speed for BBS machine only
static std::string set_additional_fan(unsigned int speed);
static std::string set_exhaust_fan(int speed,bool add_eol);
//BBS
void set_object_start_str(std::string start_string) { m_gcode_label_objects_start = start_string; }
bool is_object_start_str_empty() { return m_gcode_label_objects_start.empty(); }
void set_object_end_str(std::string end_string) { m_gcode_label_objects_end = end_string; }
bool is_object_end_str_empty() { return m_gcode_label_objects_end.empty(); }
void add_object_start_labels(std::string &gcode);
void add_object_end_labels(std::string &gcode);
void add_object_change_labels(std::string& gcode);
//BBS:
void set_current_position_clear(bool clear) { m_is_current_pos_clear = clear; };
bool is_current_position_clear() const { return m_is_current_pos_clear; };
//BBS:
static bool full_gcode_comment;
//Radian threshold of slope for lazy lift and spiral lift;
static const double slope_threshold;
//SoftFever
void set_is_bbl_machine(bool bval) {m_is_bbl_printers = bval;}
const bool is_bbl_printers() const {return m_is_bbl_printers;}
void set_is_first_layer(bool bval) { m_is_first_layer = bval; }
GCodeFlavor get_gcode_flavor() const { return config.gcode_flavor; }
// Returns whether this flavor supports separate print and travel acceleration.
static bool supports_separate_travel_acceleration(GCodeFlavor flavor);
private:
// Extruders are sorted by their ID, so that binary search is possible.
std::vector<Extruder> m_extruders;
bool m_single_extruder_multi_material;
Extruder* m_extruder;
unsigned int m_last_acceleration;
unsigned int m_last_travel_acceleration;
unsigned int m_max_travel_acceleration;
// Limit for setting the acceleration, to respect the machine limits set for the Marlin firmware.
// If set to zero, the limit is not in action.
unsigned int m_max_acceleration;
double m_max_jerk;
double m_last_jerk;
double m_max_jerk_z;
double m_max_jerk_e;
unsigned int m_travel_acceleration;
unsigned int m_travel_jerk;
//BBS
unsigned int m_last_additional_fan_speed;
int m_last_bed_temperature;
bool m_last_bed_temperature_reached;
double m_lifted;
// BBS
double m_to_lift;
LiftType m_to_lift_type;
Vec3d m_pos = Vec3d::Zero();
//BBS: this flag is used to indicate whether the m_pos is real.
//A example that of the first move, the m_pos is zero, but the real position of extruder doesn't
//Pos must be clear after the first xyz travel move
bool m_is_current_pos_clear = false;
//BBS: x, y offset for gcode generated
double m_x_offset{ 0 };
double m_y_offset{ 0 };
std::string m_gcode_label_objects_start;
std::string m_gcode_label_objects_end;
//SoftFever
bool m_is_bbl_printers = false;
double m_current_speed;
bool m_is_first_layer = true;
enum class Acceleration {
Travel,
Print
};
std::string _travel_to_z(double z, const std::string &comment);
std::string _spiral_travel_to_z(double z, const Vec2d &ij_offset, const std::string &comment);
std::string _retract(double length, double restart_extra, const std::string &comment);
std::string set_acceleration_internal(Acceleration type, unsigned int acceleration);
};
class GCodeFormatter {
public:
GCodeFormatter() {
this->buf_end = buf + buflen;
this->ptr_err.ptr = this->buf;
}
GCodeFormatter(const GCodeFormatter&) = delete;
GCodeFormatter& operator=(const GCodeFormatter&) = delete;
// At layer height 0.15mm, extrusion width 0.2mm and filament diameter 1.75mm,
// the crossection of extrusion is 0.4 * 0.15 = 0.06mm2
// and the filament crossection is 1.75^2 = 3.063mm2
// thus the filament moves 3.063 / 0.6 = 51x slower than the XY axes
// and we need roughly two decimal digits more on extruder than on XY.
#if 1
static constexpr const int XYZF_EXPORT_DIGITS = 3;
static constexpr const int E_EXPORT_DIGITS = 5;
#else
// order of magnitude smaller extrusion rate erros
static constexpr const int XYZF_EXPORT_DIGITS = 4;
static constexpr const int E_EXPORT_DIGITS = 6;
// excessive accuracy
// static constexpr const int XYZF_EXPORT_DIGITS = 6;
// static constexpr const int E_EXPORT_DIGITS = 9;
#endif
static constexpr const std::array<double, 10> pow_10 { 1., 10., 100., 1000., 10000., 100000., 1000000., 10000000., 100000000., 1000000000. };
static constexpr const std::array<double, 10> pow_10_inv { 1. / 1., 1. / 10., 1. / 100., 1. / 1000., 1. / 10000., 1. / 100000., 1. / 1000000., 1. / 10000000., 1. / 100000000., 1. / 1000000000. };
// Quantize doubles to a resolution of the G-code.
static double quantize(double v, size_t ndigits) { return std::round(v * pow_10[ndigits]) * pow_10_inv[ndigits]; }
static double quantize_xyzf(double v) { return quantize(v, XYZF_EXPORT_DIGITS); }
static double quantize_e(double v) { return quantize(v, E_EXPORT_DIGITS); }
void emit_axis(const char axis, const double v, size_t digits);
void emit_xy(const Vec2d &point) {
this->emit_axis('X', point.x(), XYZF_EXPORT_DIGITS);
this->emit_axis('Y', point.y(), XYZF_EXPORT_DIGITS);
}
void emit_xyz(const Vec3d &point) {
this->emit_axis('X', point.x(), XYZF_EXPORT_DIGITS);
this->emit_axis('Y', point.y(), XYZF_EXPORT_DIGITS);
this->emit_z(point.z());
}
void emit_z(const double z) {
this->emit_axis('Z', z, XYZF_EXPORT_DIGITS);
}
void emit_e(double v) {
this->emit_axis('E', v, E_EXPORT_DIGITS);
}
void emit_f(double speed) {
this->emit_axis('F', speed, XYZF_EXPORT_DIGITS);
}
//BBS
void emit_ij(const Vec2d &point) {
this->emit_axis('I', point.x(), XYZF_EXPORT_DIGITS);
this->emit_axis('J', point.y(), XYZF_EXPORT_DIGITS);
}
void emit_string(const std::string &s) {
strncpy(ptr_err.ptr, s.c_str(), s.size());
ptr_err.ptr += s.size();
}
void emit_comment(bool allow_comments, const std::string &comment) {
if (allow_comments && ! comment.empty()) {
*ptr_err.ptr ++ = ' '; *ptr_err.ptr ++ = ';'; *ptr_err.ptr ++ = ' ';
this->emit_string(comment);
}
}
std::string string() {
*ptr_err.ptr ++ = '\n';
return std::string(this->buf, ptr_err.ptr - buf);
}
protected:
static constexpr const size_t buflen = 256;
char buf[buflen];
char* buf_end;
std::to_chars_result ptr_err;
};
class GCodeG1Formatter : public GCodeFormatter {
public:
GCodeG1Formatter() {
this->buf[0] = 'G';
this->buf[1] = '1';
this->buf_end = buf + buflen;
this->ptr_err.ptr = this->buf + 2;
}
GCodeG1Formatter(const GCodeG1Formatter&) = delete;
GCodeG1Formatter& operator=(const GCodeG1Formatter&) = delete;
};
class GCodeG2G3Formatter : public GCodeFormatter {
public:
GCodeG2G3Formatter(bool is_ccw) {
this->buf[0] = 'G';
this->buf[1] = is_ccw ? '3' : '2';
this->buf_end = buf + buflen;
this->ptr_err.ptr = this->buf + 2;
}
GCodeG2G3Formatter(const GCodeG2G3Formatter&) = delete;
GCodeG2G3Formatter& operator=(const GCodeG2G3Formatter&) = delete;
};
} /* namespace Slic3r */
#endif /* slic3r_GCodeWriter_hpp_ */