orcaslicer/src/libslic3r/PrincipalComponents2D.cpp
SoftFever e9613e971d
1.4.5 features (#319)
* Changes:
Improve precise wall
Port PS2.6 overhang slowdown feature
Implement overhang fan for new overhang slowdown algo
Add option to switch between classic/new overhang slowdown implementation
Set Arachne as default engine
Small adjustment of temp calibration range
turn off small perimeter by default
Small UI tweaks
Change default top_surface_pattern to monotonic
Fine tune jerk

Signed-off-by: SoftFever <softfeverever@gmail.com>

* Disable optimizations for RelWithDebInfo

Signed-off-by: SoftFever <softfeverever@gmail.com>

* fix an issue that max volumetirc/vfa calibration can't send to print

Signed-off-by: SoftFever <softfeverever@gmail.com>
#322

* fix build errors

Signed-off-by: SoftFever <softfeverever@gmail.com>

---------

Signed-off-by: SoftFever <softfeverever@gmail.com>
2023-02-17 23:09:18 +08:00

140 lines
No EOL
7.6 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "PrincipalComponents2D.hpp"
#include "Point.hpp"
namespace Slic3r {
// returns triangle area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance
// none of the values is divided/normalized by area.
// The function computes intgeral over the area of the triangle, with function f(x,y) = x for first moments of area (y is analogous)
// f(x,y) = x^2 for second moment of area
// and f(x,y) = x*y for second moment of area covariance
std::tuple<float, Vec2f, Vec2f, float> compute_moments_of_area_of_triangle(const Vec2f &a, const Vec2f &b, const Vec2f &c)
{
// based on the following guide:
// Denote the vertices of S by a, b, c. Then the map
// g:(u,v)↦a+u(ba)+v(ca) ,
// which in coordinates appears as
// g:(u,v)↦{x(u,v)y(u,v)=a1+u(b1a1)+v(c1a1)=a2+u(b2a2)+v(c2a2) ,(1)
// obviously maps S bijectively onto S. Therefore the transformation formula for multiple integrals steps into action, and we obtain
// ∫Sf(x,y)d(x,y)=∫Sf(x(u,v),y(u,v))Jg(u,v) d(u,v) .
// In the case at hand the Jacobian determinant is a constant: From (1) we obtain
// Jg(u,v)=det[xuyuxvyv]=(b1a1)(c2a2)(c1a1)(b2a2) .
// Therefore we can write
// ∫Sf(x,y)d(x,y)=Jg∫10∫1u0f~(u,v) dv du ,
// where f~ denotes the pullback of f to S:
// f~(u,v):=f(x(u,v),y(u,v)) .
// Don't forget taking the absolute value of Jg!
float jacobian_determinant_abs = std::abs((b.x() - a.x()) * (c.y() - a.y()) - (c.x() - a.x()) * (b.y() - a.y()));
// coordinate transform: gx(u,v) = a.x + u * (b.x - a.x) + v * (c.x - a.x)
// coordinate transform: gy(u,v) = a.y + u * (b.y - a.y) + v * (c.y - a.y)
// second moment of area for x: f(x, y) = x^2;
// f(gx(u,v), gy(u,v)) = gx(u,v)^2 = ... (long expanded form)
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
// integral_0^1 integral_0^(1 - u) (a + u (b - a) + v (c - a))^2 dv du = 1/12 (a^2 + a (b + c) + b^2 + b c + c^2)
Vec2f second_moment_of_area_xy = jacobian_determinant_abs *
(a.cwiseProduct(a) + b.cwiseProduct(b) + b.cwiseProduct(c) + c.cwiseProduct(c) +
a.cwiseProduct(b + c)) /
12.0f;
// second moment of area covariance : f(x, y) = x*y;
// f(gx(u,v), gy(u,v)) = gx(u,v)*gy(u,v) = ... (long expanded form)
//(a_1 + u * (b_1 - a_1) + v * (c_1 - a_1)) * (a_2 + u * (b_2 - a_2) + v * (c_2 - a_2))
// == (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2))
// intermediate result: integral_0^(1 - u) (a_1 + u (b_1 - a_1) + v (c_1 - a_1)) (a_2 + u (b_2 - a_2) + v (c_2 - a_2)) dv =
// 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u - 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2
// b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) result = integral_0^1 1/6 (u - 1) (-c_1 (u - 1) (a_2 (u - 1) - 3 b_2 u) - c_2 (u -
// 1) (a_1 (u - 1) - 3 b_1 u + 2 c_1 (u - 1)) + 3 b_1 u (a_2 (u - 1) - 2 b_2 u) + a_1 (u - 1) (3 b_2 u - 2 a_2 (u - 1))) du =
// 1/24 (a_2 (b_1 + c_1) + a_1 (2 a_2 + b_2 + c_2) + b_2 c_1 + b_1 c_2 + 2 b_1 b_2 + 2 c_1 c_2)
// result is Int_T func = jacobian_determinant_abs * Int_0^1 Int_0^1-u func(gx(u,v), gy(u,v)) dv du
float second_moment_of_area_covariance = jacobian_determinant_abs * (1.0f / 24.0f) *
(a.y() * (b.x() + c.x()) + a.x() * (2.0f * a.y() + b.y() + c.y()) + b.y() * c.x() +
b.x() * c.y() + 2.0f * b.x() * b.y() + 2.0f * c.x() * c.y());
float area = jacobian_determinant_abs * 0.5f;
Vec2f first_moment_of_area_xy = jacobian_determinant_abs * (a + b + c) / 6.0f;
return {area, first_moment_of_area_xy, second_moment_of_area_xy, second_moment_of_area_covariance};
};
// returns two eigenvectors of the area covered by given polygons. The vectors are sorted by their corresponding eigenvalue, largest first
std::tuple<Vec2f, Vec2f> compute_principal_components(const Polygons &polys)
{
Vec2f centroid_accumulator = Vec2f::Zero();
Vec2f second_moment_of_area_accumulator = Vec2f::Zero();
float second_moment_of_area_covariance_accumulator = 0.0f;
float area = 0.0f;
for (const Polygon &poly : polys) {
Vec2f p0 = unscaled(poly.first_point()).cast<float>();
for (size_t i = 2; i < poly.points.size(); i++) {
Vec2f p1 = unscaled(poly.points[i - 1]).cast<float>();
Vec2f p2 = unscaled(poly.points[i]).cast<float>();
float sign = cross2(p1 - p0, p2 - p1) > 0 ? 1.0f : -1.0f;
auto [triangle_area, first_moment_of_area, second_moment_area,
second_moment_of_area_covariance] = compute_moments_of_area_of_triangle(p0, p1, p2);
area += sign * triangle_area;
centroid_accumulator += sign * first_moment_of_area;
second_moment_of_area_accumulator += sign * second_moment_area;
second_moment_of_area_covariance_accumulator += sign * second_moment_of_area_covariance;
}
}
if (area <= 0.0) {
return {Vec2f::Zero(), Vec2f::Zero()};
}
Vec2f centroid = centroid_accumulator / area;
Vec2f variance = second_moment_of_area_accumulator / area - centroid.cwiseProduct(centroid);
double covariance = second_moment_of_area_covariance_accumulator / area - centroid.x() * centroid.y();
#if 0
std::cout << "area : " << area << std::endl;
std::cout << "variancex : " << variance.x() << std::endl;
std::cout << "variancey : " << variance.y() << std::endl;
std::cout << "covariance : " << covariance << std::endl;
#endif
if (abs(covariance) < EPSILON) {
std::tuple<Vec2f, Vec2f> result{Vec2f{variance.x(), 0.0}, Vec2f{0.0, variance.y()}};
if (variance.y() > variance.x()) {
return {std::get<1>(result), std::get<0>(result)};
} else
return result;
}
// now we find the first principal component of the covered area by computing max eigenvalue and the correspoding eigenvector of
// covariance matrix
// covaraince matrix C is : | VarX Cov |
// | Cov VarY |
// Eigenvalues are solutions to det(C - lI) = 0, where l is the eigenvalue and I unit matrix
// Eigenvector for eigenvalue l is any vector v such that Cv = lv
float eigenvalue_a = 0.5f * (variance.x() + variance.y() +
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4.0f * covariance * covariance));
float eigenvalue_b = 0.5f * (variance.x() + variance.y() -
sqrt((variance.x() - variance.y()) * (variance.x() - variance.y()) + 4.0f * covariance * covariance));
Vec2f eigenvector_a{(eigenvalue_a - variance.y()) / covariance, 1.0f};
Vec2f eigenvector_b{(eigenvalue_b - variance.y()) / covariance, 1.0f};
#if 0
std::cout << "eigenvalue_a: " << eigenvalue_a << std::endl;
std::cout << "eigenvalue_b: " << eigenvalue_b << std::endl;
std::cout << "eigenvectorA: " << eigenvector_a.x() << " " << eigenvector_a.y() << std::endl;
std::cout << "eigenvectorB: " << eigenvector_b.x() << " " << eigenvector_b.y() << std::endl;
#endif
if (eigenvalue_a > eigenvalue_b) {
return {eigenvector_a, eigenvector_b};
} else {
return {eigenvector_b, eigenvector_a};
}
}
}