orcaslicer/src/libslic3r/MeshSplitImpl.hpp
SoftFever 9b2c2bff1d Support larger printer sizes by using 64-bit.
SuperSlicer is referenced for some changes.

Co-authored-by: Merill <merill@free.fr>
2024-05-10 23:47:08 +08:00

281 lines
10 KiB
C++

#ifndef MESHSPLITIMPL_HPP
#define MESHSPLITIMPL_HPP
// Disable meaningless boost warning on MSVC
#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable : 4805 )
#endif
#include "TriangleMesh.hpp"
#include "libnest2d/tools/benchmark.h"
#include "Execution/ExecutionTBB.hpp"
namespace Slic3r {
template<class ExPolicy>
std::vector<Vec3i32> create_face_neighbors_index(ExPolicy &&ex, const indexed_triangle_set &its);
namespace meshsplit_detail {
template<class Its, class Enable = void> struct ItsWithNeighborsIndex_ {
using Index = typename Its::Index;
static const indexed_triangle_set &get_its(const Its &m) { return m.get_its();}
static const Index &get_index(const Its &m) { return m.get_index(); }
};
// Define a default neighbors index for indexed_triangle_set
template<> struct ItsWithNeighborsIndex_<indexed_triangle_set> {
using Index = std::vector<Vec3i32>;
static const indexed_triangle_set &get_its(const indexed_triangle_set &its) noexcept { return its; }
static Index get_index(const indexed_triangle_set &its) noexcept
{
return create_face_neighbors_index(ex_tbb, its);
}
};
// Discover connected patches of facets one by one.
template<class NeighborIndex>
struct NeighborVisitor {
NeighborVisitor(const indexed_triangle_set &its, const NeighborIndex &neighbor_index) :
its(its), neighbor_index(neighbor_index) {
m_visited.assign(its.indices.size(), false);
m_facestack.reserve(its.indices.size());
}
NeighborVisitor(const indexed_triangle_set &its, NeighborIndex &&aneighbor_index) :
its(its), neighbor_index(m_neighbor_index_data), m_neighbor_index_data(std::move(aneighbor_index)) {
m_visited.assign(its.indices.size(), false);
m_facestack.reserve(its.indices.size());
}
template<typename Visitor>
void visit(Visitor visitor)
{
// find the next unvisited facet and push the index
auto facet = std::find(m_visited.begin() + m_seed, m_visited.end(), false);
m_seed = facet - m_visited.begin();
if (facet != m_visited.end()) {
// Skip this element in the next round.
auto idx = m_seed ++;
if (! visitor(idx))
return;
this->push(idx);
m_visited[idx] = true;
while (! m_facestack.empty()) {
size_t facet_idx = this->pop();
for (auto neighbor_idx : neighbor_index[facet_idx]) {
assert(neighbor_idx < int(m_visited.size()));
if (neighbor_idx >= 0 && !m_visited[neighbor_idx]) {
if (! visitor(size_t(neighbor_idx)))
return;
m_visited[neighbor_idx] = true;
this->push(stack_el(neighbor_idx));
}
}
}
}
}
const indexed_triangle_set &its;
const NeighborIndex &neighbor_index;
private:
// If initialized with &&neighbor_index, take the ownership of the data.
const NeighborIndex m_neighbor_index_data;
std::vector<char> m_visited;
using stack_el = size_t;
std::vector<stack_el> m_facestack;
void push(const stack_el &s) { m_facestack.emplace_back(s); }
stack_el pop() { stack_el ret = m_facestack.back(); m_facestack.pop_back(); return ret; }
// Last face visited.
size_t m_seed { 0 };
};
} // namespace meshsplit_detail
// Funky wrapper for timinig of its_split() using various neighbor index creating methods, see sandboxes/its_neighbor_index/main.cpp
template<class IndexT> struct ItsNeighborsWrapper
{
using Index = IndexT;
const indexed_triangle_set &its;
const IndexT &index_ref;
const IndexT index;
// Keeping a reference to index, the caller is responsible for keeping the index alive.
ItsNeighborsWrapper(const indexed_triangle_set &its, const IndexT &index) : its{its}, index_ref{index} {}
// Taking ownership of the index.
ItsNeighborsWrapper(const indexed_triangle_set &its, IndexT &&aindex) : its{its}, index_ref{index}, index(std::move(aindex)) {}
const auto& get_its() const noexcept { return its; }
const auto& get_index() const noexcept { return index_ref; }
};
// Can be used as the second argument to its_split to apply a functor on each
// part, instead of collecting them into a container.
template<class Fn>
struct SplitOutputFn {
Fn fn;
SplitOutputFn(Fn f): fn{std::move(f)} {}
SplitOutputFn &operator *() { return *this; }
void operator=(indexed_triangle_set &&its) { fn(std::move(its)); }
void operator=(indexed_triangle_set &its) { fn(its); }
SplitOutputFn& operator++() { return *this; };
};
// Splits a mesh into multiple meshes when possible.
template<class Its, class OutputIt>
void its_split(const Its &m, OutputIt out_it)
{
using namespace meshsplit_detail;
const indexed_triangle_set &its = ItsWithNeighborsIndex_<Its>::get_its(m);
struct VertexConv {
size_t part_id = std::numeric_limits<size_t>::max();
size_t vertex_image;
};
std::vector<VertexConv> vidx_conv(its.vertices.size());
meshsplit_detail::NeighborVisitor visitor(its, meshsplit_detail::ItsWithNeighborsIndex_<Its>::get_index(m));
std::vector<size_t> facets;
for (size_t part_id = 0;; ++part_id) {
// Collect all faces of the next patch.
facets.clear();
visitor.visit([&facets](size_t idx) { facets.emplace_back(idx); return true; });
if (facets.empty())
break;
// Create a new mesh for the part that was just split off.
indexed_triangle_set mesh;
mesh.indices.reserve(facets.size());
mesh.vertices.reserve(std::min(facets.size() * 3, its.vertices.size()));
// Assign the facets to the new mesh.
for (size_t face_id : facets) {
const auto &face = its.indices[face_id];
Vec3i32 new_face;
for (size_t v = 0; v < 3; ++v) {
auto vi = face(v);
if (vidx_conv[vi].part_id != part_id) {
vidx_conv[vi] = {part_id, mesh.vertices.size()};
mesh.vertices.emplace_back(its.vertices[size_t(vi)]);
}
new_face(v) = vidx_conv[vi].vertex_image;
}
mesh.indices.emplace_back(new_face);
}
*out_it = std::move(mesh);
++out_it;
}
}
template<class Its>
std::vector<indexed_triangle_set> its_split(const Its &its)
{
auto ret = reserve_vector<indexed_triangle_set>(3);
its_split(its, std::back_inserter(ret));
return ret;
}
template<class Its>
bool its_is_splittable(const Its &m)
{
meshsplit_detail::NeighborVisitor visitor(meshsplit_detail::ItsWithNeighborsIndex_<Its>::get_its(m), meshsplit_detail::ItsWithNeighborsIndex_<Its>::get_index(m));
bool has_some = false;
bool has_some2 = false;
// Traverse the 1st patch fully.
visitor.visit([&has_some](size_t idx) { has_some = true; return true; });
if (has_some)
// Just check whether there is any face of the 2nd patch.
visitor.visit([&has_some2](size_t idx) { has_some2 = true; return false; });
return has_some && has_some2;
}
template<class Its>
size_t its_number_of_patches(const Its &m)
{
meshsplit_detail::NeighborVisitor visitor(meshsplit_detail::ItsWithNeighborsIndex_<Its>::get_its(m), meshsplit_detail::ItsWithNeighborsIndex_<Its>::get_index(m));
size_t num_patches = 0;
for (;;) {
bool has_some = false;
// Traverse the 1st patch fully.
visitor.visit([&has_some](size_t idx) { has_some = true; return true; });
if (! has_some)
break;
++ num_patches;
}
return num_patches;
}
template<class ExPolicy>
std::vector<Vec3i32> create_face_neighbors_index(ExPolicy &&ex, const indexed_triangle_set &its)
{
const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
if (indices.empty()) return {};
assert(! its.vertices.empty());
auto vertex_triangles = VertexFaceIndex{its};
static constexpr int no_value = -1;
std::vector<Vec3i32> neighbors(indices.size(),
Vec3i32(no_value, no_value, no_value));
//for (int face_idx = 0; face_idx < indices.size(); face_idx++) {
execution::for_each(ex, size_t(0), indices.size(),
[&neighbors, &indices, &vertex_triangles] (size_t face_idx)
{
Vec3i32& neighbor = neighbors[face_idx];
const stl_triangle_vertex_indices & triangle_indices = indices[face_idx];
for (int edge_index = 0; edge_index < 3; ++edge_index) {
// check if done
int& neighbor_edge = neighbor[edge_index];
if (neighbor_edge != no_value)
// This edge already has a neighbor assigned.
continue;
Vec2i32 edge_indices = its_triangle_edge(triangle_indices, edge_index);
// IMPROVE: use same vector for 2 sides of triangle
for (const size_t other_face : vertex_triangles[edge_indices[0]]) {
if (other_face <= face_idx) continue;
const stl_triangle_vertex_indices &face_indices = indices[other_face];
int vertex_index = its_triangle_vertex_index(face_indices, edge_indices[1]);
// NOT Contain second vertex?
if (vertex_index < 0) continue;
// Has NOT oposite direction?
if (edge_indices[0] != face_indices[(vertex_index + 1) % 3]) continue;
//BBS: if this neighbor has already marked before, skip it
if (neighbors[other_face][vertex_index] != no_value)
continue;
//BBS: the same triangle with opposite direction, also treat it as open edges
//if (its_triangle_vertex_the_same(face_indices, triangle_indices))
// continue;
neighbor_edge = other_face;
neighbors[other_face][vertex_index] = face_idx;
break;
}
}
}, execution::max_concurrency(ex));
return neighbors;
}
} // namespace Slic3r
#ifdef _MSC_VER
#pragma warning( pop )
#endif
#endif // MESHSPLITIMPL_HPP