orcaslicer/src/libslic3r/Brim.cpp
wintergua 49eb40b711 FIX: brim croping in mulit-plate case
Brim will be croped to ensure it does not exceed the bed area. However,
plate offsets are not considered and thus the croping does not work in
multi-plate cases. This can be fixed by this patch.

Change-Id: Iffcce6cba23a82de1fdd9fffe8c48c4e303e9e15
(cherry picked from commit 9c53fb12153cc8a31448ae4a670171c495243dae)
2023-01-10 19:08:26 +08:00

1834 lines
94 KiB
C++

#include "clipper/clipper_z.hpp"
#include "ClipperUtils.hpp"
#include "EdgeGrid.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include "ShortestPath.hpp"
#include "libslic3r.h"
#include "PrintConfig.hpp"
#include "Model.hpp"
#include <algorithm>
#include <numeric>
#include <unordered_set>
#include <tbb/parallel_for.h>
#ifndef NDEBUG
// #define BRIM_DEBUG_TO_SVG
#endif
#if defined(BRIM_DEBUG_TO_SVG)
#include "SVG.hpp"
#endif
namespace Slic3r {
static void append_and_translate(ExPolygons &dst, const ExPolygons &src, const PrintInstance &instance) {
size_t dst_idx = dst.size();
expolygons_append(dst, src);
for (; dst_idx < dst.size(); ++dst_idx)
dst[dst_idx].translate(instance.shift.x(), instance.shift.y());
}
// BBS: generate brim area by objs
static void append_and_translate(ExPolygons& dst, const ExPolygons& src,
const PrintInstance& instance, const Print& print, std::map<ObjectID, ExPolygons>& brimAreaMap) {
ExPolygons srcShifted = src;
for (size_t src_idx = 0; src_idx < src.size(); ++src_idx)
srcShifted[src_idx].translate(instance.shift.x(), instance.shift.y());
srcShifted = diff_ex(std::move(srcShifted), dst);
//expolygons_append(dst, temp2);
expolygons_append(brimAreaMap[instance.print_object->id()], srcShifted);
}
static void append_and_translate(Polygons &dst, const Polygons &src, const PrintInstance &instance) {
size_t dst_idx = dst.size();
polygons_append(dst, src);
for (; dst_idx < dst.size(); ++dst_idx)
dst[dst_idx].translate(instance.shift.x(), instance.shift.y());
}
static float max_brim_width(const ConstPrintObjectPtrsAdaptor &objects)
{
assert(!objects.empty());
return float(std::accumulate(objects.begin(), objects.end(), 0.,
[](double partial_result, const PrintObject *object) {
return std::max(partial_result, object->config().brim_type == btNoBrim ? 0. : object->config().brim_width.value);
}));
}
// Returns ExPolygons of the bottom layer of the print object after elephant foot compensation.
static ExPolygons get_print_object_bottom_layer_expolygons(const PrintObject &print_object)
{
ExPolygons ex_polygons;
for (LayerRegion *region : print_object.layers().front()->regions())
Slic3r::append(ex_polygons, closing_ex(region->slices.surfaces, float(SCALED_EPSILON)));
return ex_polygons;
}
// Returns ExPolygons of bottom layer for every print object in Print after elephant foot compensation.
static std::vector<ExPolygons> get_print_bottom_layers_expolygons(const Print &print)
{
std::vector<ExPolygons> bottom_layers_expolygons;
bottom_layers_expolygons.reserve(print.objects().size());
for (const PrintObject *object : print.objects())
bottom_layers_expolygons.emplace_back(get_print_object_bottom_layer_expolygons(*object));
return bottom_layers_expolygons;
}
static ConstPrintObjectPtrs get_top_level_objects_with_brim(const Print &print, const std::vector<ExPolygons> &bottom_layers_expolygons)
{
assert(print.objects().size() == bottom_layers_expolygons.size());
Polygons islands;
ConstPrintObjectPtrs island_to_object;
for(size_t print_object_idx = 0; print_object_idx < print.objects().size(); ++print_object_idx) {
const PrintObject *object = print.objects()[print_object_idx];
Polygons islands_object;
islands_object.reserve(bottom_layers_expolygons[print_object_idx].size());
for (const ExPolygon &ex_poly : bottom_layers_expolygons[print_object_idx])
islands_object.emplace_back(ex_poly.contour);
islands.reserve(islands.size() + object->instances().size() * islands_object.size());
for (const PrintInstance &instance : object->instances())
for (Polygon &poly : islands_object) {
islands.emplace_back(poly);
islands.back().translate(instance.shift);
island_to_object.emplace_back(object);
}
}
assert(islands.size() == island_to_object.size());
ClipperLib_Z::Paths islands_clip;
islands_clip.reserve(islands.size());
for (const Polygon &poly : islands) {
islands_clip.emplace_back();
ClipperLib_Z::Path &island_clip = islands_clip.back();
island_clip.reserve(poly.points.size());
int island_idx = int(&poly - &islands.front());
// The Z coordinate carries index of the island used to get the pointer to the object.
for (const Point &pt : poly.points)
island_clip.emplace_back(pt.x(), pt.y(), island_idx + 1);
}
// Init Clipper
ClipperLib_Z::Clipper clipper;
// Assign the maximum Z from four points. This values is valid index of the island
clipper.ZFillFunction([](const ClipperLib_Z::IntPoint &e1bot, const ClipperLib_Z::IntPoint &e1top, const ClipperLib_Z::IntPoint &e2bot,
const ClipperLib_Z::IntPoint &e2top, ClipperLib_Z::IntPoint &pt) {
pt.z() = std::max(std::max(e1bot.z(), e1top.z()), std::max(e2bot.z(), e2top.z()));
});
// Add islands
clipper.AddPaths(islands_clip, ClipperLib_Z::ptSubject, true);
// Execute union operation to construct polytree
ClipperLib_Z::PolyTree islands_polytree;
//FIXME likely pftNonZero or ptfPositive would be better. Why are we using ptfEvenOdd for Unions?
clipper.Execute(ClipperLib_Z::ctUnion, islands_polytree, ClipperLib_Z::pftEvenOdd, ClipperLib_Z::pftEvenOdd);
std::unordered_set<size_t> processed_objects_idx;
ConstPrintObjectPtrs top_level_objects_with_brim;
for (int i = 0; i < islands_polytree.ChildCount(); ++i) {
for (const ClipperLib_Z::IntPoint &point : islands_polytree.Childs[i]->Contour) {
if (point.z() != 0 && processed_objects_idx.find(island_to_object[point.z() - 1]->id().id) == processed_objects_idx.end()) {
top_level_objects_with_brim.emplace_back(island_to_object[point.z() - 1]);
processed_objects_idx.insert(island_to_object[point.z() - 1]->id().id);
}
}
}
return top_level_objects_with_brim;
}
static Polygons top_level_outer_brim_islands(const ConstPrintObjectPtrs &top_level_objects_with_brim, const double scaled_resolution)
{
Polygons islands;
for (const PrintObject *object : top_level_objects_with_brim) {
if (!object->has_brim())
continue;
//FIXME how about the brim type?
auto brim_object_gap = float(scale_(object->config().brim_object_gap.value));
Polygons islands_object;
for (const ExPolygon &ex_poly : get_print_object_bottom_layer_expolygons(*object)) {
Polygons contour_offset = offset(ex_poly.contour, brim_object_gap, ClipperLib::jtSquare);
for (Polygon &poly : contour_offset)
poly.douglas_peucker(scaled_resolution);
polygons_append(islands_object, std::move(contour_offset));
}
if (!object->support_layers().empty()) {
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing()) {
Polygons contour_offset = offset(support_contour, brim_object_gap, ClipperLib::jtSquare);
for (Polygon& poly : contour_offset)
poly.douglas_peucker(scaled_resolution);
polygons_append(islands_object, std::move(contour_offset));
}
}
for (const PrintInstance &instance : object->instances())
append_and_translate(islands, islands_object, instance);
}
return islands;
}
static ExPolygons top_level_outer_brim_area(const Print &print,
const ConstPrintObjectPtrs &top_level_objects_with_brim,
const std::vector<ExPolygons> &bottom_layers_expolygons,
const float no_brim_offset,
// BBS
double& brim_width_max,
std::map<ObjectID,
double>& brim_width_map)
{
const auto scaled_resolution = scaled<double>(print.config().resolution.value);
assert(print.objects().size() == bottom_layers_expolygons.size());
std::unordered_set<size_t> top_level_objects_idx;
top_level_objects_idx.reserve(top_level_objects_with_brim.size());
for (const PrintObject *object : top_level_objects_with_brim)
top_level_objects_idx.insert(object->id().id);
ExPolygons brim_area;
ExPolygons no_brim_area;
brim_width_max = 0;
for(size_t print_object_idx = 0; print_object_idx < print.objects().size(); ++print_object_idx) {
const PrintObject *object = print.objects()[print_object_idx];
const BrimType brim_type = object->config().brim_type.value;
const float brim_object_gap = scale_(object->config().brim_object_gap.value);
// recording the autoAssigned brimWidth and corresponding objs
double brimWidthAuto = object->config().brim_width.value;
double flowWidth = print.brim_flow().scaled_spacing() * SCALING_FACTOR;
brimWidthAuto = floor(brimWidthAuto / flowWidth / 2) * flowWidth * 2;
brim_width_map.insert(std::make_pair(object->id(), brimWidthAuto));
brim_width_max = std::max(brim_width_max, brimWidthAuto);
const float brim_width = scale_(brimWidthAuto);
const bool is_top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
ExPolygons brim_area_object;
ExPolygons no_brim_area_object;
for (const ExPolygon &ex_poly : bottom_layers_expolygons[print_object_idx]) {
if ((brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) && is_top_outer_brim)
append(brim_area_object, diff_ex(offset(ex_poly.contour, brim_width + brim_object_gap, ClipperLib::jtRound, scaled_resolution), offset(ex_poly.contour, brim_object_gap, ClipperLib::jtSquare)));
// After 7ff76d07684858fd937ef2f5d863f105a10f798e offset and shrink don't work with CW polygons (holes), so let's make it CCW.
Polygons ex_poly_holes_reversed = ex_poly.holes;
polygons_reverse(ex_poly_holes_reversed);
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, shrink_ex(ex_poly_holes_reversed, no_brim_offset, ClipperLib::jtSquare));
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, diff_ex(offset(ex_poly.contour, no_brim_offset, ClipperLib::jtSquare), ex_poly_holes_reversed));
if (brim_type != BrimType::btNoBrim)
append(no_brim_area_object, offset_ex(ExPolygon(ex_poly.contour), brim_object_gap, ClipperLib::jtSquare));
no_brim_area_object.emplace_back(ex_poly.contour);
}
if (!object->support_layers().empty()) {
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing()) {
if ((brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) && is_top_outer_brim)
append(brim_area_object, diff_ex(offset(support_contour, brim_width + brim_object_gap, ClipperLib::jtRound, scaled_resolution), offset(support_contour, brim_object_gap)));
if (brim_type != BrimType::btNoBrim)
append(no_brim_area_object, offset_ex(ExPolygon(support_contour), brim_object_gap));
no_brim_area_object.emplace_back(support_contour);
}
}
for (const PrintInstance &instance : object->instances()) {
append_and_translate(brim_area, brim_area_object, instance);
append_and_translate(no_brim_area, no_brim_area_object, instance);
}
}
return diff_ex(brim_area, no_brim_area);
}
// BBS: the brims of different objs will not overlapped with each other, and are stored by objs and by extruders
static ExPolygons top_level_outer_brim_area(const Print& print, const ConstPrintObjectPtrs& top_level_objects_with_brim,
const float no_brim_offset, double& brim_width_max, std::map<ObjectID, double>& brim_width_map,
std::map<ObjectID, ExPolygons>& brimAreaMap,
std::map<ObjectID, ExPolygons>& supportBrimAreaMap, std::vector<std::pair<ObjectID, unsigned int>>& objPrintVec)
{
std::unordered_set<size_t> top_level_objects_idx;
top_level_objects_idx.reserve(top_level_objects_with_brim.size());
for (const PrintObject* object : top_level_objects_with_brim)
top_level_objects_idx.insert(object->id().id);
unsigned int support_material_extruder = 1;
if (print.has_support_material()) {
assert(top_level_objects_with_brim.front()->config().support_filament >= 0);
if (top_level_objects_with_brim.front()->config().support_filament > 0)
support_material_extruder = top_level_objects_with_brim.front()->config().support_filament;
}
ExPolygons brim_area;
ExPolygons no_brim_area;
brim_width_max = 0;
struct brimWritten {
bool obj;
bool sup;
};
std::map<ObjectID, brimWritten> brimToWrite;
for (const auto& objectWithExtruder : objPrintVec)
brimToWrite.insert({ objectWithExtruder.first, {true,true} });
for (unsigned int extruderNo : print.extruders()) {
++extruderNo;
for (const auto &objectWithExtruder : objPrintVec) {
const PrintObject* object = print.get_object(objectWithExtruder.first);
const BrimType brim_type = object->config().brim_type.value;
const float brim_offset = scale_(object->config().brim_object_gap.value);
// recording the autoAssigned brimWidth and corresponding objs
double brimWidthAuto = object->config().brim_width.value;
double flowWidth = print.brim_flow().scaled_spacing() * SCALING_FACTOR;
brimWidthAuto = floor(brimWidthAuto / flowWidth / 2) * flowWidth * 2;
brim_width_map.insert(std::make_pair(object->id(), brimWidthAuto));
brim_width_max = std::max(brim_width_max, brimWidthAuto);
const float brim_width = scale_(brimWidthAuto);
const bool is_top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
ExPolygons nullBrim;
brimAreaMap.insert(std::make_pair(object->id(), nullBrim));
ExPolygons brim_area_object;
ExPolygons brim_area_support;
ExPolygons no_brim_area_object;
ExPolygons no_brim_area_support;
if (objectWithExtruder.second == extruderNo && brimToWrite.at(object->id()).obj) {
for (const ExPolygon& ex_poly : object->layers().front()->lslices) {
if ((brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) && is_top_outer_brim) {
append(brim_area_object, diff_ex(offset_ex(ex_poly.contour, brim_width + brim_offset, jtRound, SCALED_RESOLUTION),
offset_ex(ex_poly.contour, brim_offset)));
}
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, offset_ex(ex_poly.holes, -no_brim_offset));
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, diff_ex(offset(ex_poly.contour, no_brim_offset), ex_poly.holes));
if (brim_type != BrimType::btNoBrim)
append(no_brim_area_object, offset_ex(ExPolygon(ex_poly.contour), brim_offset));
no_brim_area_object.emplace_back(ex_poly.contour);
}
brimToWrite.at(object->id()).obj = false;
for (const PrintInstance& instance : object->instances()) {
if (!brim_area_object.empty())
append_and_translate(brim_area, brim_area_object, instance, print, brimAreaMap);
append_and_translate(no_brim_area, no_brim_area_object, instance);
}
if (brimAreaMap.find(object->id()) != brimAreaMap.end())
expolygons_append(brim_area, brimAreaMap[object->id()]);
}
if (support_material_extruder == extruderNo && brimToWrite.at(object->id()).sup) {
if (!object->support_layers().empty()) {
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing()) {
//BBS: no brim offset for supports
if ((brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) && is_top_outer_brim)
append(brim_area_support, diff_ex(offset(support_contour, brim_width, jtRound, SCALED_RESOLUTION), offset(support_contour, 0)));
if (brim_type != BrimType::btNoBrim)
append(no_brim_area_support, offset_ex(support_contour, 0));
no_brim_area_support.emplace_back(support_contour);
}
}
brimToWrite.at(object->id()).sup = false;
for (const PrintInstance& instance : object->instances()) {
if (!brim_area_support.empty())
append_and_translate(brim_area, brim_area_support, instance, print, supportBrimAreaMap);
append_and_translate(no_brim_area, no_brim_area_support, instance);
}
if (supportBrimAreaMap.find(object->id()) != supportBrimAreaMap.end())
expolygons_append(brim_area, supportBrimAreaMap[object->id()]);
}
}
}
for (const PrintObject* object : print.objects()) {
if (brimAreaMap.find(object->id()) != brimAreaMap.end())
brimAreaMap[object->id()] = diff_ex(brimAreaMap[object->id()], no_brim_area);
if (supportBrimAreaMap.find(object->id()) != supportBrimAreaMap.end())
supportBrimAreaMap[object->id()] = diff_ex(supportBrimAreaMap[object->id()], no_brim_area);
}
return diff_ex(std::move(brim_area), no_brim_area);
}
static ExPolygons inner_brim_area(const Print &print,
const ConstPrintObjectPtrs &top_level_objects_with_brim,
const std::vector<ExPolygons> &bottom_layers_expolygons,
const float no_brim_offset)
{
assert(print.objects().size() == bottom_layers_expolygons.size());
std::unordered_set<size_t> top_level_objects_idx;
top_level_objects_idx.reserve(top_level_objects_with_brim.size());
for (const PrintObject *object : top_level_objects_with_brim)
top_level_objects_idx.insert(object->id().id);
ExPolygons brim_area;
ExPolygons no_brim_area;
Polygons holes;
for(size_t print_object_idx = 0; print_object_idx < print.objects().size(); ++print_object_idx) {
const PrintObject *object = print.objects()[print_object_idx];
const BrimType brim_type = object->config().brim_type.value;
const float brim_object_gap = scale_(object->config().brim_object_gap.value);
double flowWidth = print.brim_flow().scaled_spacing() * SCALING_FACTOR;
const float brim_width = scale_(floor(object->config().brim_width.value / flowWidth / 2) * flowWidth * 2);
const bool top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
ExPolygons brim_area_object;
ExPolygons no_brim_area_object;
Polygons holes_object;
for (const ExPolygon &ex_poly : bottom_layers_expolygons[print_object_idx]) {
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) {
if (top_outer_brim)
no_brim_area_object.emplace_back(ex_poly);
else
append(brim_area_object, diff_ex(offset(ex_poly.contour, brim_width + brim_object_gap, ClipperLib::jtSquare), offset(ex_poly.contour, brim_object_gap, ClipperLib::jtSquare)));
}
// After 7ff76d07684858fd937ef2f5d863f105a10f798e offset and shrink don't work with CW polygons (holes), so let's make it CCW.
Polygons ex_poly_holes_reversed = ex_poly.holes;
polygons_reverse(ex_poly_holes_reversed);
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim)
append(brim_area_object, diff_ex(shrink_ex(ex_poly_holes_reversed, brim_object_gap, ClipperLib::jtSquare), shrink_ex(ex_poly_holes_reversed, brim_width + brim_object_gap, ClipperLib::jtSquare)));
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, diff_ex(offset(ex_poly.contour, no_brim_offset, ClipperLib::jtSquare), ex_poly_holes_reversed));
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, diff_ex(ExPolygon(ex_poly.contour), shrink_ex(ex_poly_holes_reversed, no_brim_offset, ClipperLib::jtSquare)));
append(holes_object, ex_poly_holes_reversed);
}
append(no_brim_area_object, offset_ex(bottom_layers_expolygons[print_object_idx], brim_object_gap, ClipperLib::jtSquare));
for (const PrintInstance &instance : object->instances()) {
append_and_translate(brim_area, brim_area_object, instance);
append_and_translate(no_brim_area, no_brim_area_object, instance);
append_and_translate(holes, holes_object, instance);
}
}
return diff_ex(intersection_ex(to_polygons(std::move(brim_area)), holes), no_brim_area);
}
// BBS: the brims of different objs will not overlapped with each other, and are stored by objs and by extruders
static ExPolygons inner_brim_area(const Print& print, const ConstPrintObjectPtrs& top_level_objects_with_brim,
const float no_brim_offset, std::map<ObjectID, ExPolygons>& brimAreaMap,
std::map<ObjectID, ExPolygons>& supportBrimAreaMap,
std::vector<std::pair<ObjectID, unsigned int>>& objPrintVec)
{
std::unordered_set<size_t> top_level_objects_idx;
top_level_objects_idx.reserve(top_level_objects_with_brim.size());
for (const PrintObject* object : top_level_objects_with_brim)
top_level_objects_idx.insert(object->id().id);
unsigned int support_material_extruder = 1;
if (print.has_support_material()) {
assert(top_level_objects_with_brim.front()->config().support_filament >= 0);
if (top_level_objects_with_brim.front()->config().support_filament > 0)
support_material_extruder = top_level_objects_with_brim.front()->config().support_filament;
}
ExPolygons brim_area;
ExPolygons no_brim_area;
Polygons holes;
Polygon bedShape(get_bed_shape(print.config()));
holes.emplace_back(get_bed_shape(print.config()));
std::map<ObjectID, ExPolygons> innerBrimAreaMap;
std::map<ObjectID, ExPolygons> innerSupportBrimAreaMap;
struct brimWritten {
bool obj;
bool sup;
};
std::map<ObjectID, brimWritten> brimToWrite;
for (const auto& objectWithExtruder : objPrintVec)
brimToWrite.insert({ objectWithExtruder.first, {true,true} });
for (unsigned int extruderNo : print.extruders()) {
++extruderNo;
for (const auto& objectWithExtruder : objPrintVec) {
const PrintObject* object = print.get_object(objectWithExtruder.first);
const BrimType brim_type = object->config().brim_type.value;
const float brim_offset = scale_(object->config().brim_object_gap.value);
double flowWidth = print.brim_flow().scaled_spacing() * SCALING_FACTOR;
const float brim_width = scale_(floor(object->config().brim_width.value / flowWidth / 2) * flowWidth * 2);
const bool top_outer_brim = top_level_objects_idx.find(object->id().id) != top_level_objects_idx.end();
ExPolygons brim_area_object;
ExPolygons no_brim_area_object;
ExPolygons brim_area_support;
ExPolygons no_brim_area_support;
Polygons holes_object;
Polygons holes_support;
if (objectWithExtruder.second == extruderNo && brimToWrite.at(object->id()).obj) {
for (const ExPolygon& ex_poly : object->layers().front()->lslices) {
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) {
if (top_outer_brim)
no_brim_area_object.emplace_back(ex_poly);
else
append(brim_area_object, diff_ex(offset_ex(ex_poly.contour, brim_width + brim_offset, jtRound, SCALED_RESOLUTION), offset_ex(ex_poly.contour, brim_offset)));
}
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btOuterAndInner)
append(brim_area_object, diff_ex(offset_ex(ex_poly.holes, -brim_offset), offset_ex(ex_poly.holes, -brim_width - brim_offset)));
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, diff_ex(offset(ex_poly.contour, no_brim_offset), ex_poly.holes));
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, offset_ex(ex_poly.holes, -no_brim_offset));
append(holes_object, ex_poly.holes);
}
append(no_brim_area_object, offset_ex(object->layers().front()->lslices, brim_offset));
brimToWrite.at(object->id()).obj = false;
for (const PrintInstance& instance : object->instances()) {
if (!brim_area_object.empty())
append_and_translate(brim_area, brim_area_object, instance, print, innerBrimAreaMap);
append_and_translate(no_brim_area, no_brim_area_object, instance);
append_and_translate(holes, holes_object, instance);
}
if (innerBrimAreaMap.find(object->id()) != innerBrimAreaMap.end())
expolygons_append(brim_area, innerBrimAreaMap[object->id()]);
}
if (support_material_extruder == extruderNo && brimToWrite.at(object->id()).sup) {
if (!object->support_layers().empty()) {
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing()) {
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) {
if (!top_outer_brim)
append(brim_area_support, diff_ex(offset_ex(support_contour, brim_width + brim_offset, jtRound, SCALED_RESOLUTION), offset_ex(support_contour, brim_offset)));
}
if (brim_type != BrimType::btNoBrim)
append(no_brim_area_support, offset_ex(support_contour, 0));
no_brim_area_support.emplace_back(support_contour);
}
}
}
brimToWrite.at(object->id()).sup = false;
for (const PrintInstance& instance : object->instances()) {
if (!brim_area_support.empty())
append_and_translate(brim_area, brim_area_support, instance, print, innerSupportBrimAreaMap);
append_and_translate(no_brim_area, no_brim_area_support, instance);
append_and_translate(holes, holes_support, instance);
}
if (innerSupportBrimAreaMap.find(object->id()) != innerSupportBrimAreaMap.end())
expolygons_append(brim_area, innerSupportBrimAreaMap[object->id()]);
}
}
for (const PrintObject* object : print.objects()) {
if (innerBrimAreaMap.find(object->id()) != innerBrimAreaMap.end()) {
innerBrimAreaMap[object->id()] = intersection_ex(to_polygons(innerBrimAreaMap[object->id()]), holes);
append(brimAreaMap[object->id()], innerBrimAreaMap[object->id()]);
}
if (innerSupportBrimAreaMap.find(object->id()) != innerSupportBrimAreaMap.end()) {
innerSupportBrimAreaMap[object->id()] = intersection_ex(to_polygons(innerSupportBrimAreaMap[object->id()]), holes);
append(supportBrimAreaMap[object->id()], innerSupportBrimAreaMap[object->id()]);
}
}
for (const PrintObject* object : print.objects()) {
if (brimAreaMap.find(object->id()) != brimAreaMap.end())
brimAreaMap[object->id()] = diff_ex(brimAreaMap[object->id()], no_brim_area);
if (supportBrimAreaMap.find(object->id()) != supportBrimAreaMap.end())
supportBrimAreaMap[object->id()] = diff_ex(supportBrimAreaMap[object->id()], no_brim_area);
}
brim_area = intersection_ex(to_polygons(brim_area), holes);
append(no_brim_area, brim_area);
return no_brim_area;
}
//BBS maximum temperature difference from print object class
double getTemperatureFromExtruder(const PrintObject* printObject) {
auto print = printObject->print();
std::vector<size_t> extrudersFirstLayer;
auto firstLayerRegions = printObject->layers().front()->regions();
if (!firstLayerRegions.empty()) {
for (const LayerRegion* regionPtr : firstLayerRegions) {
if (regionPtr->has_extrusions())
extrudersFirstLayer.push_back(regionPtr->region().extruder(frExternalPerimeter));
}
}
const PrintConfig& config = print->config();
int curr_bed_type = config.option("curr_bed_type")->getInt();
const ConfigOptionInts* bed_temp_1st_layer_opt = config.option<ConfigOptionInts>(get_bed_temp_1st_layer_key((BedType)curr_bed_type));
double maxDeltaTemp = 0;
for (auto extruderID : extrudersFirstLayer) {
int bedTemp = bed_temp_1st_layer_opt->get_at(extruderID - 1);
if (bedTemp > maxDeltaTemp)
maxDeltaTemp = bedTemp;
}
return maxDeltaTemp;
}
//BBS adhesion coefficients from print object class
double getadhesionCoeff(const PrintObject* printObject)
{
auto& insts = printObject->instances();
auto objectVolumes = insts[0].model_instance->get_object()->volumes;
auto print = printObject->print();
std::vector<size_t> extrudersFirstLayer;
auto firstLayerRegions = printObject->layers().front()->regions();
if (!firstLayerRegions.empty()) {
for (const LayerRegion* regionPtr : firstLayerRegions) {
if (regionPtr->has_extrusions())
extrudersFirstLayer.push_back(regionPtr->region().extruder(frExternalPerimeter));
}
}
double adhesionCoeff = 1;
for (const ModelVolume* modelVolume : objectVolumes) {
for (auto iter = extrudersFirstLayer.begin(); iter != extrudersFirstLayer.end(); iter++)
if (modelVolume->extruder_id() == *iter) {
if (Model::extruderParamsMap.find(modelVolume->extruder_id()) != Model::extruderParamsMap.end())
if (Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "PETG") {
adhesionCoeff = 2;
}
else if (Model::extruderParamsMap.at(modelVolume->extruder_id()).materialName == "TPU") {
adhesionCoeff = 0.5;
}
}
}
return adhesionCoeff;
/*
def->enum_values.push_back("PLA");
def->enum_values.push_back("PET");
def->enum_values.push_back("ABS");
def->enum_values.push_back("ASA");
def->enum_values.push_back("TPU");//BBS
def->enum_values.push_back("FLEX");
def->enum_values.push_back("HIPS");
def->enum_values.push_back("EDGE");
def->enum_values.push_back("NGEN");
def->enum_values.push_back("NYLON");
def->enum_values.push_back("PVA");
def->enum_values.push_back("PC");
def->enum_values.push_back("PP");
def->enum_values.push_back("PEI");
def->enum_values.push_back("PEEK");
def->enum_values.push_back("PEKK");
def->enum_values.push_back("POM");
def->enum_values.push_back("PSU");
def->enum_values.push_back("PVDF");
def->enum_values.push_back("SCAFF");
*/
}
// BBS: second moment of area of a polygon
bool compSecondMoment(Polygon poly, Vec2d& sm)
{
if (poly.is_clockwise())
poly.make_counter_clockwise();
sm = Vec2d(0., 0.);
if (poly.points.size() >= 3) {
Vec2d p1 = poly.points.back().cast<double>();
for (const Point& p : poly.points) {
Vec2d p2 = p.cast<double>();
double a = cross2(p1, p2);
sm += Vec2d((p1.y() * p1.y() + p1.y() * p2.y() + p2.y() * p2.y()), (p1.x() * p1.x() + p1.x() * p2.x() + p2.x() * p2.x())) * a / 12;
p1 = p2;
}
return true;
}
return false;
}
// BBS: properties of an expolygon
struct ExPolyProp
{
double aera = 0;
Vec2d centroid;
Vec2d secondMomentOfAreaRespectToCentroid;
};
// BBS: second moment of area of an expolyon
bool compSecondMoment(const ExPolygon& expoly, ExPolyProp& expolyProp)
{
double aera = expoly.contour.area();
Vec2d cent = expoly.contour.centroid().cast<double>() * aera;
Vec2d sm;
if (!compSecondMoment(expoly.contour, sm))
return false;
for (auto& hole : expoly.holes) {
double a = hole.area();
aera += hole.area();
cent += hole.centroid().cast<double>() * a;
Vec2d smh;
if (compSecondMoment(hole, smh))
sm += -smh;
}
cent = cent / aera;
sm = sm - Vec2d(cent.y() * cent.y(), cent.x() * cent.x()) * aera;
expolyProp.aera = aera;
expolyProp.centroid = cent;
expolyProp.secondMomentOfAreaRespectToCentroid = sm;
return true;
}
// BBS: second moment of area of expolygons
bool compSecondMoment(const ExPolygons& expolys, double& smExpolysX, double& smExpolysY)
{
if (expolys.empty()) return false;
std::vector<ExPolyProp> props;
for (const ExPolygon& expoly : expolys) {
ExPolyProp prop;
if (compSecondMoment(expoly, prop))
props.push_back(prop);
}
if (props.empty())
return false;
double totalArea = 0.;
Vec2d staticMoment(0., 0.);
for (const ExPolyProp& prop : props) {
totalArea += prop.aera;
staticMoment += prop.centroid * prop.aera;
}
double totalCentroidX = staticMoment.x() / totalArea;
double totalCentroidY = staticMoment.y() / totalArea;
smExpolysX = 0;
smExpolysY = 0;
for (const ExPolyProp& prop : props) {
double deltaX = prop.centroid.x() - totalCentroidX;
double deltaY = prop.centroid.y() - totalCentroidY;
smExpolysX += prop.secondMomentOfAreaRespectToCentroid.x() + prop.aera * deltaY * deltaY;
smExpolysY += prop.secondMomentOfAreaRespectToCentroid.y() + prop.aera * deltaX * deltaX;
}
return true;
}
//BBS: config brimwidth by volumes
double configBrimWidthByVolumes(double deltaT, double adhension, double maxSpeed, const ModelVolume* modelVolumePtr, const ExPolygons& expolys)
{
// height of a volume
double height = 0;
if (modelVolumePtr->is_model_part()) {
auto rawBoundingbox = modelVolumePtr->mesh().transformed_bounding_box(modelVolumePtr->get_matrix());
auto bbox = modelVolumePtr->get_object()->instances.front()->transform_bounding_box(rawBoundingbox);
auto bbox_size = bbox.size();
height = bbox_size(2);
}
// sencond moment of the expolygons of the first layer of the volume
double Ixx = -1.e30, Iyy = -1.e30;
if (!expolys.empty()) {
if (!compSecondMoment(expolys, Ixx, Iyy))
Ixx = Iyy = -1.e30;
}
Ixx = Ixx * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR;
Iyy = Iyy * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR;
// bounding box of the expolygons of the first layer of the volume
BoundingBox bbox2;
for (const auto& expoly : expolys)
bbox2.merge(get_extents(expoly.contour));
const double& bboxX = bbox2.size()(0);
const double& bboxY = bbox2.size()(1);
double thermalLength = sqrt(bboxX * bboxX + bboxY * bboxY) * SCALING_FACTOR;
double thermalLengthRef = Model::getThermalLength(modelVolumePtr);
double height_to_area = std::max(height / Ixx * (bbox2.size()(1) * SCALING_FACTOR), height / Iyy * (bbox2.size()(0) * SCALING_FACTOR));
double brim_width = adhension * std::min(std::min(std::max(height_to_area * maxSpeed / 24, thermalLength * 8. / thermalLengthRef * std::min(height, 30.) / 30.), 18.), 1.5 * thermalLength);
// small brims are omitted
if (brim_width < 5 && brim_width < 1.5 * thermalLength)
brim_width = 0;
// large brims are omitted
if (brim_width > 18) brim_width = 18.;
return brim_width;
}
//BBS: config brimwidth by group of volumes
double configBrimWidthByVolumeGroups(double adhension, double maxSpeed, const std::vector<ModelVolume*> modelVolumePtrs, const ExPolygons& expolys, double &groupHeight)
{
// height of a group of volumes
double height = 0;
BoundingBoxf3 mergedBbx;
for (const auto& modelVolumePtr : modelVolumePtrs) {
if (modelVolumePtr->is_model_part()) {
Slic3r::Transform3d t;
if (modelVolumePtr->get_object()->instances.size() > 0)
t = modelVolumePtr->get_object()->instances.front()->get_matrix() * modelVolumePtr->get_matrix();
else
t = modelVolumePtr->get_matrix();
auto bbox = modelVolumePtr->mesh().transformed_bounding_box(t);
mergedBbx.merge(bbox);
}
}
auto bbox_size = mergedBbx.size();
height = bbox_size(2);
groupHeight = height;
// second moment of the expolygons of the first layer of the volume group
double Ixx = -1.e30, Iyy = -1.e30;
if (!expolys.empty()) {
if (!compSecondMoment(expolys, Ixx, Iyy))
Ixx = Iyy = -1.e30;
}
Ixx = Ixx * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR;
Iyy = Iyy * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR * SCALING_FACTOR;
// bounding box of the expolygons of the first layer of the volume
BoundingBox bbox2;
for (const auto& expoly : expolys)
bbox2.merge(get_extents(expoly.contour));
const double& bboxX = bbox2.size()(0);
const double& bboxY = bbox2.size()(1);
double thermalLength = sqrt(bboxX * bboxX + bboxY * bboxY) * SCALING_FACTOR;
double thermalLengthRef = Model::getThermalLength(modelVolumePtrs);
double height_to_area = std::max(height / Ixx * (bbox2.size()(1) * SCALING_FACTOR), height / Iyy * (bbox2.size()(0) * SCALING_FACTOR)) * height / 1920;
double brim_width = adhension * std::min(std::min(std::max(height_to_area * maxSpeed, thermalLength * 8. / thermalLengthRef * std::min(height, 30.) / 30.), 18.), 1.5 * thermalLength);
// small brims are omitted
if (brim_width < 5 && brim_width < 1.5 * thermalLength)
brim_width = 0;
// large brims are omitted
if (brim_width > 18) brim_width = 18.;
return brim_width;
}
//BBS: create all brims
static ExPolygons outer_inner_brim_area(const Print& print,
const float no_brim_offset, std::map<ObjectID, ExPolygons>& brimAreaMap,
std::map<ObjectID, ExPolygons>& supportBrimAreaMap,
std::vector<std::pair<ObjectID, unsigned int>>& objPrintVec,
std::vector<unsigned int>& printExtruders)
{
unsigned int support_material_extruder = printExtruders.front() + 1;
ExPolygons brim_area;
ExPolygons no_brim_area;
Polygons holes;
struct brimWritten {
bool obj;
bool sup;
};
std::map<ObjectID, brimWritten> brimToWrite;
for (const auto& objectWithExtruder : objPrintVec)
brimToWrite.insert({ objectWithExtruder.first, {true,true} });
ExPolygons objectIslands;
auto bedPoly = Model::getBedPolygon();
auto bedExPoly = diff_ex((offset(bedPoly, scale_(30.), jtRound, SCALED_RESOLUTION)), { bedPoly });
for (unsigned int extruderNo : printExtruders) {
++extruderNo;
for (const auto& objectWithExtruder : objPrintVec) {
const PrintObject* object = print.get_object(objectWithExtruder.first);
const BrimType brim_type = object->config().brim_type.value;
float brim_offset = scale_(object->config().brim_object_gap.value);
double flowWidth = print.brim_flow().scaled_spacing() * SCALING_FACTOR;
float brim_width = scale_(floor(object->config().brim_width.value / flowWidth / 2) * flowWidth * 2);
const float scaled_flow_width = print.brim_flow().scaled_spacing();
const float scaled_additional_brim_width = scale_(floor(5 / flowWidth / 2) * flowWidth * 2);
const float scaled_half_min_adh_length = scale_(1.1);
bool has_brim_auto = object->config().brim_type == btAutoBrim;
ExPolygons brim_area_object;
ExPolygons no_brim_area_object;
ExPolygons brim_area_support;
ExPolygons no_brim_area_support;
Polygons holes_object;
Polygons holes_support;
if (objectWithExtruder.second == extruderNo && brimToWrite.at(object->id()).obj) {
double deltaT = getTemperatureFromExtruder(object);
double adhension = getadhesionCoeff(object);
double maxSpeed = Model::findMaxSpeed(object->model_object());
// BBS: brims are generated by volume groups
for (const auto& volumeGroup : object->firstLayerObjGroups()) {
// find volumePtrs included in this group
std::vector<ModelVolume*> groupVolumePtrs;
for (auto& volumeID : volumeGroup.volume_ids) {
ModelVolume* currentModelVolumePtr = nullptr;
//BBS: support shared object logic
const PrintObject* shared_object = object->get_shared_object();
if (!shared_object)
shared_object = object;
for (auto volumePtr : shared_object->model_object()->volumes) {
if (volumePtr->id() == volumeID) {
currentModelVolumePtr = volumePtr;
break;
}
}
if (currentModelVolumePtr != nullptr) groupVolumePtrs.push_back(currentModelVolumePtr);
}
if (groupVolumePtrs.empty()) continue;
double groupHeight = 0.;
// config brim width in auto-brim mode
if (has_brim_auto) {
double brimWidthRaw = configBrimWidthByVolumeGroups(adhension, maxSpeed, groupVolumePtrs, volumeGroup.slices, groupHeight);
brim_width = scale_(floor(brimWidthRaw / flowWidth / 2) * flowWidth * 2);
}
for (const ExPolygon& ex_poly : volumeGroup.slices) {
// BBS: additional brim width will be added if part's adhension area is too small and brim is not generated
float brim_width_mod;
if (brim_width < scale_(5.) && has_brim_auto && groupHeight > 10.) {
brim_width_mod = ex_poly.area() / ex_poly.contour.length() < scaled_half_min_adh_length
&& brim_width < scaled_flow_width ? brim_width + scaled_additional_brim_width : brim_width;
}
else {
brim_width_mod = brim_width;
}
//BBS: brim width should be limited to the 1.5*boundingboxSize of a single polygon.
if (has_brim_auto) {
BoundingBox bbox2 = ex_poly.contour.bounding_box();
brim_width_mod = std::min(brim_width_mod, float(std::max(bbox2.size()(0), bbox2.size()(1))));
}
brim_width_mod = floor(brim_width_mod / scaled_flow_width / 2) * scaled_flow_width * 2;
Polygons ex_poly_holes_reversed = ex_poly.holes;
polygons_reverse(ex_poly_holes_reversed);
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) {
// BBS: inner and outer boundary are offset from the same polygon incase of round off error.
auto innerExpoly = offset_ex(ex_poly.contour, brim_offset, jtRound, SCALED_RESOLUTION);
append(brim_area_object, diff_ex(offset_ex(innerExpoly, brim_width_mod, jtRound, SCALED_RESOLUTION), innerExpoly));
// BBS: brim should be apart from holes
append(no_brim_area_object, diff_ex(ex_poly_holes_reversed, offset_ex(ex_poly_holes_reversed, -scale_(5.))));
}
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btOuterAndInner) {
append(brim_area_object, diff_ex(offset_ex(ex_poly_holes_reversed, -brim_offset), offset_ex(ex_poly_holes_reversed, -brim_width - brim_offset)));
}
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_object, diff_ex(offset(ex_poly.contour, no_brim_offset), ex_poly_holes_reversed));
if (brim_type == BrimType::btNoBrim)
append(no_brim_area_object, offset_ex(ex_poly_holes_reversed, -no_brim_offset));
append(holes_object, ex_poly_holes_reversed);
}
}
auto objectIsland = offset_ex(object->layers().front()->lslices, brim_offset, jtRound, SCALED_RESOLUTION);
append(no_brim_area_object, objectIsland);
brimToWrite.at(object->id()).obj = false;
for (const PrintInstance& instance : object->instances()) {
if (!brim_area_object.empty())
append_and_translate(brim_area, brim_area_object, instance, print, brimAreaMap);
append_and_translate(no_brim_area, no_brim_area_object, instance);
append_and_translate(holes, holes_object, instance);
append_and_translate(objectIslands, objectIsland, instance);
}
if (brimAreaMap.find(object->id()) != brimAreaMap.end())
expolygons_append(brim_area, brimAreaMap[object->id()]);
}
support_material_extruder = object->config().support_filament;
if (support_material_extruder == 0 && object->has_support_material()) {
if (print.config().print_sequence == PrintSequence::ByObject)
support_material_extruder = objectWithExtruder.second;
else
support_material_extruder = printExtruders.front() + 1;
}
if (support_material_extruder == extruderNo && brimToWrite.at(object->id()).sup) {
if (!object->support_layers().empty() && object->support_layers().front()->support_type==stInnerNormal) {
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing()) {
// Brim will not be generated for supports
/*
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) {
append(brim_area_support, diff_ex(offset_ex(support_contour, brim_width + brim_offset, jtRound, SCALED_RESOLUTION), offset_ex(support_contour, brim_offset)));
}
if (brim_type != BrimType::btNoBrim)
append(no_brim_area_support, offset_ex(support_contour, 0));
*/
no_brim_area_support.emplace_back(support_contour);
}
}
// BBS
if (!object->support_layers().empty() && object->support_layers().front()->support_type == stInnerTree) {
for (const ExPolygon &ex_poly : object->support_layers().front()->lslices) {
// BBS: additional brim width will be added if adhension area is too small without brim
float brim_width_mod = ex_poly.area() / ex_poly.contour.length() < scaled_half_min_adh_length
&& brim_width < scaled_flow_width ? brim_width + scaled_additional_brim_width : brim_width;
brim_width_mod = floor(brim_width_mod / scaled_flow_width / 2) * scaled_flow_width * 2;
// Brim will not be generated for supports
/*
if (brim_type == BrimType::btOuterOnly || brim_type == BrimType::btOuterAndInner || brim_type == BrimType::btAutoBrim) {
append(brim_area_support, diff_ex(offset_ex(ex_poly.contour, brim_width_mod + brim_offset, jtRound, SCALED_RESOLUTION), offset_ex(ex_poly.contour, brim_offset)));
}
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btOuterAndInner)
append(brim_area_support, diff_ex(offset_ex(ex_poly.holes, -brim_offset), offset_ex(ex_poly.holes, -brim_width - brim_offset)));
*/
if (brim_type == BrimType::btInnerOnly || brim_type == BrimType::btNoBrim)
append(no_brim_area_support, diff_ex(offset(ex_poly.contour, no_brim_offset), ex_poly.holes));
if (brim_type == BrimType::btNoBrim)
append(no_brim_area_support, offset_ex(ex_poly.holes, -no_brim_offset));
append(holes_support, ex_poly.holes);
if (brim_type != BrimType::btNoBrim)
append(no_brim_area_support, offset_ex(ex_poly.contour, 0));
no_brim_area_support.emplace_back(ex_poly.contour);
}
}
brimToWrite.at(object->id()).sup = false;
for (const PrintInstance& instance : object->instances()) {
if (!brim_area_support.empty())
append_and_translate(brim_area, brim_area_support, instance, print, supportBrimAreaMap);
append_and_translate(no_brim_area, no_brim_area_support, instance);
append_and_translate(holes, holes_support, instance);
}
if (supportBrimAreaMap.find(object->id()) != supportBrimAreaMap.end())
expolygons_append(brim_area, supportBrimAreaMap[object->id()]);
}
}
}
if (!bedExPoly.empty()){
auto plateOffset = print.get_plate_origin();
bedExPoly.front().translate(scale_(plateOffset.x()), scale_(plateOffset.y()));
no_brim_area.push_back(bedExPoly.front());
}
for (const PrintObject* object : print.objects())
if (brimAreaMap.find(object->id()) != brimAreaMap.end()) {
brimAreaMap[object->id()] = diff_ex(brimAreaMap[object->id()], no_brim_area);
if (supportBrimAreaMap.find(object->id()) != supportBrimAreaMap.end())
supportBrimAreaMap[object->id()] = diff_ex(supportBrimAreaMap[object->id()], no_brim_area);
}
brim_area.clear();
for (const PrintObject* object : print.objects()) {
// BBS: brim should be contacted to at least one object's island or brim area
if (brimAreaMap.find(object->id()) != brimAreaMap.end()) {
// find other objects' brim area
ExPolygons otherExPolys;
for (const PrintObject* otherObject : print.objects()) {
if ((otherObject->id() != object->id()) && (brimAreaMap.find(otherObject->id()) != brimAreaMap.end())) {
expolygons_append(otherExPolys, brimAreaMap[otherObject->id()]);
}
}
auto tempArea = brimAreaMap[object->id()];
brimAreaMap[object->id()].clear();
for (int ia = 0; ia != tempArea.size(); ++ia) {
// find this object's other brim area
ExPolygons otherExPoly;
for (int iao = 0; iao != tempArea.size(); ++iao)
if (iao != ia) otherExPoly.push_back(tempArea[iao]);
auto offsetedTa = offset_ex(tempArea[ia], print.brim_flow().scaled_spacing() * 2, jtRound, SCALED_RESOLUTION);
if (!intersection_ex(offsetedTa, objectIslands).empty() ||
!intersection_ex(offsetedTa, otherExPoly).empty() ||
!intersection_ex(offsetedTa, otherExPolys).empty())
brimAreaMap[object->id()].push_back(tempArea[ia]);
}
expolygons_append(brim_area, brimAreaMap[object->id()]);
}
}
return brim_area;
}
// Flip orientation of open polylines to minimize travel distance.
static void optimize_polylines_by_reversing(Polylines *polylines)
{
for (size_t poly_idx = 1; poly_idx < polylines->size(); ++poly_idx) {
const Polyline &prev = (*polylines)[poly_idx - 1];
Polyline & next = (*polylines)[poly_idx];
if (!next.is_closed()) {
double dist_to_start = (next.first_point() - prev.last_point()).cast<double>().norm();
double dist_to_end = (next.last_point() - prev.last_point()).cast<double>().norm();
if (dist_to_end < dist_to_start)
next.reverse();
}
}
}
static Polylines connect_brim_lines(Polylines &&polylines, const Polygons &brim_area, float max_connection_length)
{
if (polylines.empty())
return {};
BoundingBox bbox = get_extents(polylines);
bbox.merge(get_extents(brim_area));
EdgeGrid::Grid grid(bbox.inflated(SCALED_EPSILON));
grid.create(brim_area, polylines, coord_t(scale_(10.)));
struct Visitor
{
explicit Visitor(const EdgeGrid::Grid &grid) : grid(grid) {}
bool operator()(coord_t iy, coord_t ix)
{
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = grid.cell_data_range(iy, ix);
this->intersect = false;
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = grid.segment(*it_contour_and_segment);
if (Geometry::segments_intersect(segment.first, segment.second, brim_line.a, brim_line.b)) {
this->intersect = true;
return false;
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid &grid;
Line brim_line;
bool intersect = false;
} visitor(grid);
// Connect successive polylines if they are open, their ends are closer than max_connection_length.
// Remove empty polylines.
{
// Skip initial empty lines.
size_t poly_idx = 0;
for (; poly_idx < polylines.size() && polylines[poly_idx].empty(); ++ poly_idx) ;
size_t end = ++ poly_idx;
double max_connection_length2 = Slic3r::sqr(max_connection_length);
for (; poly_idx < polylines.size(); ++poly_idx) {
Polyline &next = polylines[poly_idx];
if (! next.empty()) {
Polyline &prev = polylines[end - 1];
bool connect = false;
if (! prev.is_closed() && ! next.is_closed()) {
double dist2 = (prev.last_point() - next.first_point()).cast<double>().squaredNorm();
if (dist2 <= max_connection_length2) {
visitor.brim_line.a = prev.last_point();
visitor.brim_line.b = next.first_point();
// Shrink the connection line to avoid collisions with the brim centerlines.
visitor.brim_line.extend(-SCALED_EPSILON);
grid.visit_cells_intersecting_line(visitor.brim_line.a, visitor.brim_line.b, visitor);
connect = ! visitor.intersect;
}
}
if (connect) {
append(prev.points, std::move(next.points));
} else {
if (end < poly_idx)
polylines[end] = std::move(next);
++ end;
}
}
}
if (end < polylines.size())
polylines.erase(polylines.begin() + int(end), polylines.end());
}
return std::move(polylines);
}
// BBS: this function is used to generate brim for inner island inside holes
// Collect island + brim area to be minused when generating inner brim for holes
static void make_inner_island_brim(const Print& print, const ConstPrintObjectPtrs& top_level_objects_with_brim,
ExtrusionEntityCollection &brim, ExPolygons &islands_area_ex)
{
const auto scaled_resolution = scaled<double>(print.config().resolution.value);
auto save_polygon_if_is_inner_island = [scaled_resolution](const Polygons& holes_area, Polygon& contour, std::map<size_t, Polygons>& hole_island_pair) {
for (size_t i = 0; i < holes_area.size(); i++) {
Polygons contour_polys;
contour_polys.push_back(contour);
if (diff_ex(contour_polys, { holes_area[i] }).empty()) {
// BBS: this is an inner island inside holes_area[i], save
contour.douglas_peucker(scaled_resolution);
hole_island_pair[i].push_back(contour);
break;
}
}
};
Flow flow = print.brim_flow();
for (const PrintObject* object : top_level_objects_with_brim) {
const BrimType brim_type = object->config().brim_type.value;
// BBS: don't need to handle this object if hasn't enabled outer_brim
if (brim_type == BrimType::btNoBrim)
continue;
//BBS: 1 collect holes area which is used to limit the brim of inner island
Polygons holes_area;
for (const ExPolygon& ex_poly : object->layers().front()->lslices)
polygons_append(holes_area, ex_poly.holes);
//BBS: 2 get the island polygons inside holes, saved as map
std::map<size_t, Polygons> hole_island_pair;
for (const ExPolygon& ex_poly : object->layers().front()->lslices) {
Polygon counter = ex_poly.contour;
save_polygon_if_is_inner_island(holes_area, counter, hole_island_pair);
}
if (!object->support_layers().empty()) {
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing()) {
Polygon counter = support_contour;
save_polygon_if_is_inner_island(holes_area, counter, hole_island_pair);
}
}
//BBS: 3 generate loops, only save part of loop which inside hole
const float brim_offset = scale_(object->config().brim_object_gap.value);
const float brim_width = scale_(object->config().brim_width.value);
if (brim_type == BrimType::btInnerOnly) {
// If brim_type is btInnerOnly, we actually doesn't generate loops for inner island.
// Only update islands_area_ex and return
for (auto it = hole_island_pair.begin(); it != hole_island_pair.end(); it++) {
ExPolygons islands_area_ex_object = intersection_ex(offset(it->second, brim_offset), offset(holes_area[it->first], -brim_offset));
for (const PrintInstance& instance : object->instances())
append_and_translate(islands_area_ex, islands_area_ex_object, instance);
}
}
else {
size_t num_loops = size_t(floor(brim_width / float(flow.scaled_spacing())));
for (auto it = hole_island_pair.begin(); it != hole_island_pair.end(); it++) {
Polygons loops;
Polygons inner_islands = offset(it->second, brim_offset);
Polygons brimable_area = offset(holes_area[it->first], -brim_offset); //offset to keep away from hole
Polygons contour = inner_islands;
for (size_t i = 0; i < num_loops; ++i) {
contour = offset(contour, float(flow.scaled_spacing()), jtSquare);
for (Polygon& poly : contour)
poly.douglas_peucker(scaled_resolution);
polygons_append(loops, offset(contour, -0.5f * float(flow.scaled_spacing())));
}
// BBS: to be checked.
//loops = union_pt_chained_outside_in(loops, false);
loops = union_pt_chained_outside_in(loops);
std::vector<Polylines> loops_pl_by_levels;
{
Polylines loops_pl = to_polylines(loops);
loops_pl_by_levels.assign(loops_pl.size(), Polylines());
tbb::parallel_for(tbb::blocked_range<size_t>(0, loops_pl.size()),
[&loops_pl_by_levels, &loops_pl, &brimable_area](const tbb::blocked_range<size_t>& range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
loops_pl_by_levels[i] = chain_polylines(intersection_pl({ std::move(loops_pl[i]) }, brimable_area));
}
});
}
// BBS: Reduce down to the ordered list of polylines.
Polylines all_loops_object;
for (Polylines& polylines : loops_pl_by_levels)
append(all_loops_object, std::move(polylines));
loops_pl_by_levels.clear();
optimize_polylines_by_reversing(&all_loops_object);
all_loops_object = connect_brim_lines(std::move(all_loops_object), offset(inner_islands, float(SCALED_EPSILON)), float(flow.scaled_spacing()) * 2.f);
Polylines final_loops;
for (const PrintInstance& instance : object->instances()) {
size_t dst_idx = final_loops.size();
final_loops.insert(final_loops.end(), all_loops_object.begin(), all_loops_object.end());
for (; dst_idx < final_loops.size(); ++dst_idx)
final_loops[dst_idx].translate(instance.shift.x(), instance.shift.y());
}
extrusion_entities_append_loops_and_paths(brim.entities, std::move(final_loops),
erBrim, float(flow.mm3_per_mm()), float(flow.width()),
float(print.skirt_first_layer_height()));
//BBS: save all inner island and inner island brim area here, which is necesary if generate inner brim for holes
//Inner brim of holes must not occupy this area
ExPolygons islands_area_ex_object = intersection_ex(contour, brimable_area);
for (const PrintInstance& instance : object->instances())
append_and_translate(islands_area_ex, islands_area_ex_object, instance);
}
}
}
}
//BBS: the brim are generated one by one, and sorted by objs/supports and extruders
static void make_inner_island_brim(const Print& print, const ConstPrintObjectPtrs& top_level_objects_with_brim,
std::map<ObjectID, ExPolygons>& innerbrimAreaMap,
std::map<ObjectID, ExPolygons>& innerSupportBrimAreaMap,
ExPolygons& islands_area_ex, ExPolygons& NobrimArea,
std::vector<std::pair<ObjectID, unsigned int>>& objPrintVec)
{
auto save_polygon_if_is_inner_island = [](const Polygons& holes_area, Polygon& counter, std::map<size_t, Polygons>& hole_island_pair) {
for (size_t i = 0; i < holes_area.size(); i++) {
if (diff_ex(Polygons{ counter }, { holes_area[i] }).empty()) {
// BBS: this is an inner island inside holes_area[i], save
counter.douglas_peucker(SCALED_RESOLUTION);
hole_island_pair[i].push_back(counter);
break;
}
}
};
unsigned int support_material_extruder = 1;
if (print.has_support_material()) {
assert(top_level_objects_with_brim.front()->config().support_filament >= 0);
if (top_level_objects_with_brim.front()->config().support_filament > 0)
support_material_extruder = top_level_objects_with_brim.front()->config().support_filament;
}
std::unordered_set<size_t> top_level_objects_idx;
top_level_objects_idx.reserve(top_level_objects_with_brim.size());
for (const PrintObject* object : top_level_objects_with_brim)
top_level_objects_idx.insert(object->id().id);
struct brimWritten {
bool obj;
bool sup;
};
std::map<ObjectID, brimWritten> brimToWrite;
for (const auto& objectWithExtruder : objPrintVec)
if (top_level_objects_idx.find(objectWithExtruder.first.id) != top_level_objects_idx.end())
brimToWrite.insert({ objectWithExtruder.first, {true,true} });
Flow flow = print.brim_flow();
for (unsigned int extruderNo : print.extruders()) {
++extruderNo;
for (const auto& objectWithExtruder : objPrintVec) {
if (top_level_objects_idx.find(objectWithExtruder.first.id) != top_level_objects_idx.end()) {
const PrintObject* object = print.get_object(objectWithExtruder.first);
const BrimType brim_type = object->config().brim_type.value;
// BBS: don't need to handle this object if hasn't enabled outer_brim
if (brim_type == BrimType::btNoBrim)
continue;
//BBS: 1 collect holes area which is used to limit the brim of inner island
Polygons holes_area;
for (const ExPolygon& ex_poly : object->layers().front()->lslices)
polygons_append(holes_area, ex_poly.holes);
//BBS: 2 get the island polygons inside holes, saved as map
std::map<size_t, Polygons> hole_island_pair;
for (const ExPolygon& ex_poly : object->layers().front()->lslices) {
Polygon counter = ex_poly.contour;
save_polygon_if_is_inner_island(holes_area, counter, hole_island_pair);
}
std::map<size_t, Polygons> hole_island_pair_supports;
if (!object->support_layers().empty()) {
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing()) {
Polygon counter = support_contour;
save_polygon_if_is_inner_island(holes_area, counter, hole_island_pair_supports);
}
}
//BBS: 3 generate loops, only save part of loop which inside hole
const float brim_offset = scale_(object->config().brim_object_gap.value);
const float brim_width = floor(scale_(object->config().brim_width.value) / 2 / flow.scaled_spacing()) * 2 * flow.scaled_spacing();
if (objectWithExtruder.second == extruderNo && brimToWrite.at(object->id()).obj) {
if (brim_type == BrimType::btInnerOnly) {
// If brim_type is btInnerOnly, we actually doesn't generate loops for inner island.
// Only update islands_area_ex and return
for (auto it = hole_island_pair.begin(); it != hole_island_pair.end(); it++) {
ExPolygons islands_area_ex_object = intersection_ex(offset(it->second, brim_offset), offset(holes_area[it->first], -brim_offset));
for (const PrintInstance& instance : object->instances())
append_and_translate(islands_area_ex, islands_area_ex_object, instance);
}
brimToWrite.at(object->id()).obj = false;
}
else {
for (auto it = hole_island_pair.begin(); it != hole_island_pair.end(); it++) {
Polygons loops;
Polygons inner_islands = offset(it->second, brim_offset);
Polygons brimable_area = offset(holes_area[it->first], -brim_offset); //offset to keep away from hole
Polygons contour = offset(inner_islands, brim_offset + brim_width, jtRound, SCALED_RESOLUTION);
for (Polygon& poly : contour)
poly.douglas_peucker(SCALED_RESOLUTION);
//BBS: save all inner island and inner island brim area here, which is necesary if generate inner brim for holes
//Inner brim of holes must not occupy this area
ExPolygons islands_area_ex_object = intersection_ex(contour, brimable_area);
ExPolygons inner_islands_exp = offset_ex(inner_islands, 0.);
islands_area_ex_object = diff_ex(islands_area_ex_object, inner_islands_exp);
for (const PrintInstance& instance : object->instances())
append_and_translate(islands_area_ex, islands_area_ex_object, instance, print, innerbrimAreaMap);
}
brimToWrite.at(object->id()).obj = false;
}
if (innerbrimAreaMap.find(object->id()) != innerbrimAreaMap.end())
expolygons_append(islands_area_ex, innerbrimAreaMap[object->id()]);
}
if (support_material_extruder == extruderNo && brimToWrite.at(object->id()).sup) {
if (brim_type == BrimType::btInnerOnly) {
// If brim_type is btInnerOnly, we actually doesn't generate loops for inner island.
// Only update islands_area_ex and return
for (auto it = hole_island_pair_supports.begin(); it != hole_island_pair_supports.end(); it++) {
ExPolygons islands_area_ex_support = intersection_ex(offset(it->second, 0), offset(holes_area[it->first], 0));
for (const PrintInstance& instance : object->instances())
append_and_translate(islands_area_ex, islands_area_ex_support, instance);
}
brimToWrite.at(object->id()).sup = false;
}
else {
for (auto it = hole_island_pair_supports.begin(); it != hole_island_pair_supports.end(); it++) {
Polygons loops;
Polygons inner_islands = offset(it->second, 0);
Polygons brimable_area = offset(holes_area[it->first], -float(flow.scaled_spacing())); //offset to keep away from hole
Polygons contour = offset(inner_islands, brim_width, jtRound, SCALED_RESOLUTION);
for (Polygon& poly : contour)
poly.douglas_peucker(SCALED_RESOLUTION);
//BBS: save all inner island and inner island brim area here, which is necesary if generate inner brim for holes
//Inner brim of holes must not occupy this area
ExPolygons islands_area_ex_support = intersection_ex(contour, brimable_area);
ExPolygons inner_islands_exp = offset_ex(inner_islands, 0.);
islands_area_ex_support = diff_ex(islands_area_ex_support, inner_islands_exp);
for (const PrintInstance& instance : object->instances())
append_and_translate(islands_area_ex, islands_area_ex_support, instance, print, innerSupportBrimAreaMap);
}
brimToWrite.at(object->id()).sup = false;
}
if (innerSupportBrimAreaMap.find(object->id()) != innerSupportBrimAreaMap.end())
expolygons_append(islands_area_ex, innerSupportBrimAreaMap[object->id()]);
}
}
}
}
islands_area_ex = diff_ex(islands_area_ex, NobrimArea);
for (const PrintObject* object : print.objects()) {
if (innerbrimAreaMap.find(object->id()) != innerbrimAreaMap.end())
innerbrimAreaMap[object->id()] = diff_ex(innerbrimAreaMap[object->id()], NobrimArea);
if (innerSupportBrimAreaMap.find(object->id()) != innerSupportBrimAreaMap.end())
innerSupportBrimAreaMap[object->id()] = diff_ex(innerSupportBrimAreaMap[object->id()], NobrimArea);
}
}
static void make_inner_brim(const Print &print,
const ConstPrintObjectPtrs &top_level_objects_with_brim,
const std::vector<ExPolygons> &bottom_layers_expolygons,
ExtrusionEntityCollection &brim)
{
assert(print.objects().size() == bottom_layers_expolygons.size());
const auto scaled_resolution = scaled<double>(print.config().resolution.value);
//BBS: generate brim for inner island first
ExPolygons inner_islands_ex;
make_inner_island_brim(print, top_level_objects_with_brim, brim, inner_islands_ex);
#ifdef INNER_ISLAND_BRIM_DEBUG_TO_SVG
static int irun = 0;
BoundingBox bbox_svg;
bbox_svg.merge(get_extents(inner_islands_ex));
{
std::stringstream stri;
stri << "inner_island_and_brim_area_" << irun << ".svg";
SVG svg(stri.str(), bbox_svg);
svg.draw(to_polylines(inner_islands_ex), "blue");
svg.Close();
}
++ irun;
#endif
Flow flow = print.brim_flow();
ExPolygons islands_ex = inner_brim_area(print, top_level_objects_with_brim, bottom_layers_expolygons, float(flow.scaled_spacing()));
//BBS: brim of hole must not overlap with inner island and inner island brim
if (!inner_islands_ex.empty()) {
islands_ex = diff_ex(islands_ex, inner_islands_ex);
}
Polygons loops;
islands_ex = offset_ex(islands_ex, -0.5f * float(flow.scaled_spacing()));// jtSquare seems not working when expandign the holes
for (size_t i = 0; !islands_ex.empty(); ++i) {
for (ExPolygon &poly_ex : islands_ex)
poly_ex.douglas_peucker(scaled_resolution);
polygons_append(loops, to_polygons(islands_ex));// jtSquare seems not working when expandign the holes
islands_ex = offset_ex(islands_ex, -1.3f * float(flow.scaled_spacing()));
islands_ex = offset_ex(islands_ex, .3f * float(flow.scaled_spacing()));
}
loops = union_pt_chained_outside_in(loops);
std::reverse(loops.begin(), loops.end());
extrusion_entities_append_loops(brim.entities, std::move(loops), erBrim, float(flow.mm3_per_mm()),
float(flow.width()), float(print.skirt_first_layer_height()));
}
// BBS: generate inner brim by objs
static void make_inner_brim(const Print& print, const ConstPrintObjectPtrs& top_level_objects_with_brim,
std::map<ObjectID, ExPolygons>& brimAreaMap, std::map<ObjectID, ExPolygons>& supportBrimAreaMap,
std::vector<std::pair<ObjectID, unsigned int>>& objPrintVec)
{
//BBS: generate brim for inner island first
#ifdef INNER_ISLAND_BRIM_DEBUG_TO_SVG
static int irun = 0;
BoundingBox bbox_svg;
bbox_svg.merge(get_extents(inner_islands_ex));
{
std::stringstream stri;
stri << "inner_island_and_brim_area_" << irun << ".svg";
SVG svg(stri.str(), bbox_svg);
svg.draw(to_polylines(inner_islands_ex), "blue");
svg.Close();
}
++irun;
#endif
Flow flow = print.brim_flow();
ExPolygons NoBrim = inner_brim_area(print, top_level_objects_with_brim,
float(flow.scaled_spacing()), brimAreaMap, supportBrimAreaMap, objPrintVec);
ExPolygons inner_islands_ex;
std::map<ObjectID, ExPolygons> innerBrimAreaMap;
std::map<ObjectID, ExPolygons> innerSupportBrimAreaMap;
/*make_inner_island_brim(print, top_level_objects_with_brim, innerBrimAreaMap, innerSupportBrimAreaMap,
inner_islands_ex, NoBrim, objPrintVec);*/
//BBS: brim of hole must not overlap with inner island and inner island brim
if (!inner_islands_ex.empty()) {
if (brimAreaMap.size() > 0) {
for (auto iter = brimAreaMap.begin(); iter != brimAreaMap.end(); ++iter) {
if (!iter->second.empty()) {
iter->second = diff_ex(iter->second, inner_islands_ex);
};
}
}
if (supportBrimAreaMap.size() > 0) {
for (auto iter = supportBrimAreaMap.begin(); iter != supportBrimAreaMap.end(); ++iter) {
if (!iter->second.empty()) {
iter->second = diff_ex(iter->second, inner_islands_ex);
};
}
}
for (const PrintObject* object : print.objects()) {
if (innerBrimAreaMap.find(object->id()) != innerBrimAreaMap.end()) {
append(brimAreaMap[object->id()], innerBrimAreaMap[object->id()]);
}
if (innerSupportBrimAreaMap.find(object->id()) != innerSupportBrimAreaMap.end()) {
append(supportBrimAreaMap[object->id()], innerSupportBrimAreaMap[object->id()]);
}
}
}
}
//BBS: generate out brim by offseting ExPolygons 'islands_area_ex'
Polygons tryExPolygonOffset(const ExPolygons islandAreaEx, const Print& print)
{
const auto scaled_resolution = scaled<double>(print.config().resolution.value);
Polygons loops;
ExPolygons islands_ex;
Flow flow = print.brim_flow();
double resolution = 0.0125 / SCALING_FACTOR;
islands_ex = islandAreaEx;
for (ExPolygon& poly_ex : islands_ex)
poly_ex.douglas_peucker(resolution);
islands_ex = offset_ex(std::move(islands_ex), -0.5f * float(flow.scaled_spacing()), jtRound, resolution);
for (size_t i = 0; !islands_ex.empty(); ++i) {
for (ExPolygon& poly_ex : islands_ex)
poly_ex.douglas_peucker(resolution);
polygons_append(loops, to_polygons(islands_ex));
islands_ex = offset_ex(std::move(islands_ex), -1.4f*float(flow.scaled_spacing()), jtRound, resolution);
for (ExPolygon& poly_ex : islands_ex)
poly_ex.douglas_peucker(resolution);
islands_ex = offset_ex(std::move(islands_ex), 0.4f*float(flow.scaled_spacing()), jtRound, resolution);
}
return loops;
}
//BBS: a function creates the ExtrusionEntityCollection from the brim area defined by ExPolygons
ExtrusionEntityCollection makeBrimInfill(const ExPolygons& singleBrimArea, const Print& print, const Polygons& islands_area) {
Polygons loops = tryExPolygonOffset(singleBrimArea, print);
Flow flow = print.brim_flow();
loops = union_pt_chained_outside_in(loops);
std::vector<Polylines> loops_pl_by_levels;
{
Polylines loops_pl = to_polylines(loops);
loops_pl_by_levels.assign(loops_pl.size(), Polylines());
tbb::parallel_for(tbb::blocked_range<size_t>(0, loops_pl.size()),
[&loops_pl_by_levels, &loops_pl, &islands_area](const tbb::blocked_range<size_t>& range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
loops_pl_by_levels[i] = chain_polylines({ std::move(loops_pl[i]) });
//loops_pl_by_levels[i] = chain_polylines(intersection_pl({ std::move(loops_pl[i]) }, islands_area));
}
});
}
// output
ExtrusionEntityCollection brim;
// Reduce down to the ordered list of polylines.
Polylines all_loops;
for (Polylines& polylines : loops_pl_by_levels)
append(all_loops, std::move(polylines));
loops_pl_by_levels.clear();
// Flip orientation of open polylines to minimize travel distance.
optimize_polylines_by_reversing(&all_loops);
all_loops = connect_brim_lines(std::move(all_loops), offset(singleBrimArea, float(SCALED_EPSILON)), float(flow.scaled_spacing()) * 2.f);
extrusion_entities_append_loops_and_paths(brim.entities, std::move(all_loops), erBrim, float(flow.mm3_per_mm()), float(flow.width()), float(print.skirt_first_layer_height()));
return brim;
}
//BBS: an overload of the orignal brim generator that generates the brim by obj and by extruders
void make_brim(const Print& print, PrintTryCancel try_cancel, Polygons& islands_area,
std::map<ObjectID, ExtrusionEntityCollection>& brimMap,
std::map<ObjectID, ExtrusionEntityCollection>& supportBrimMap,
std::vector<std::pair<ObjectID, unsigned int>> &objPrintVec,
std::vector<unsigned int>& printExtruders)
{
double brim_width_max = 0;
std::map<ObjectID, double> brim_width_map;
std::map<ObjectID, ExPolygons> brimAreaMap;
std::map<ObjectID, ExPolygons> supportBrimAreaMap;
Flow flow = print.brim_flow();
const auto scaled_resolution = scaled<double>(print.config().resolution.value);
ExPolygons islands_area_ex = outer_inner_brim_area(print,
float(flow.scaled_spacing()), brimAreaMap, supportBrimAreaMap, objPrintVec, printExtruders);
// BBS: Find boundingbox of the first layer
for (const ObjectID printObjID : print.print_object_ids()) {
BoundingBox bbx;
PrintObject* object = const_cast<PrintObject*>(print.get_object(printObjID));
for (const ExPolygon& ex_poly : object->layers().front()->lslices)
for (const PrintInstance& instance : object->instances()) {
auto ex_poly_translated = ex_poly;
ex_poly_translated.translate(instance.shift.x(), instance.shift.y());
bbx.merge(get_extents(ex_poly_translated.contour));
}
if (!object->support_layers().empty())
for (const Polygon& support_contour : object->support_layers().front()->support_fills.polygons_covered_by_spacing())
for (const PrintInstance& instance : object->instances()) {
auto ex_poly_translated = support_contour;
ex_poly_translated.translate(instance.shift.x(), instance.shift.y());
bbx.merge(get_extents(ex_poly_translated));
}
if (supportBrimAreaMap.find(printObjID) != supportBrimAreaMap.end()) {
for (const ExPolygon& ex_poly : supportBrimAreaMap.at(printObjID))
bbx.merge(get_extents(ex_poly.contour));
}
if (brimAreaMap.find(printObjID) != brimAreaMap.end()) {
for (const ExPolygon& ex_poly : brimAreaMap.at(printObjID))
bbx.merge(get_extents(ex_poly.contour));
}
object->firstLayerObjectBrimBoundingBox = bbx;
}
islands_area = to_polygons(islands_area_ex);
for (auto iter = brimAreaMap.begin(); iter != brimAreaMap.end(); ++iter) {
if (!iter->second.empty()) {
brimMap.insert(std::make_pair(iter->first, makeBrimInfill(iter->second, print, islands_area)));
};
}
for (auto iter = supportBrimAreaMap.begin(); iter != supportBrimAreaMap.end(); ++iter) {
if (!iter->second.empty()) {
supportBrimMap.insert(std::make_pair(iter->first, makeBrimInfill(iter->second, print, islands_area)));
};
}
size_t num_loops = size_t(floor(brim_width_max / flow.spacing()));
BOOST_LOG_TRIVIAL(debug) << "brim_width_max, num_loops: " << brim_width_max << ", " << num_loops;
}
// Produce brim lines around those objects, that have the brim enabled.
// Collect islands_area to be merged into the final 1st layer convex hull.
ExtrusionEntityCollection make_brim(const Print &print, PrintTryCancel try_cancel, Polygons &islands_area)
{
double brim_width_max = 0;
std::map<ObjectID, double> brim_width_map;
const auto scaled_resolution = scaled<double>(print.config().resolution.value);
Flow flow = print.brim_flow();
std::vector<ExPolygons> bottom_layers_expolygons = get_print_bottom_layers_expolygons(print);
ConstPrintObjectPtrs top_level_objects_with_brim = get_top_level_objects_with_brim(print, bottom_layers_expolygons);
Polygons islands = top_level_outer_brim_islands(top_level_objects_with_brim, scaled_resolution);
ExPolygons islands_area_ex = top_level_outer_brim_area(print, top_level_objects_with_brim, bottom_layers_expolygons, float(flow.scaled_spacing()), brim_width_max, brim_width_map);
islands_area = to_polygons(islands_area_ex);
Polygons loops = tryExPolygonOffset(islands_area_ex, print);
size_t num_loops = size_t(floor(brim_width_max / flow.spacing()));
BOOST_LOG_TRIVIAL(debug) << "brim_width_max, num_loops: " << brim_width_max << ", " << num_loops;
loops = union_pt_chained_outside_in(loops);
std::vector<Polylines> loops_pl_by_levels;
{
Polylines loops_pl = to_polylines(loops);
loops_pl_by_levels.assign(loops_pl.size(), Polylines());
tbb::parallel_for(tbb::blocked_range<size_t>(0, loops_pl.size()),
[&loops_pl_by_levels, &loops_pl, &islands_area](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
loops_pl_by_levels[i] = chain_polylines(intersection_pl({ std::move(loops_pl[i]) }, islands_area));
}
});
}
// output
ExtrusionEntityCollection brim;
// Reduce down to the ordered list of polylines.
Polylines all_loops;
for (Polylines &polylines : loops_pl_by_levels)
append(all_loops, std::move(polylines));
loops_pl_by_levels.clear();
// Flip orientation of open polylines to minimize travel distance.
optimize_polylines_by_reversing(&all_loops);
#ifdef BRIM_DEBUG_TO_SVG
static int irun = 0;
++ irun;
{
SVG svg(debug_out_path("brim-%d.svg", irun).c_str(), get_extents(all_loops));
svg.draw(union_ex(islands), "blue");
svg.draw(islands_area_ex, "green");
svg.draw(all_loops, "black", coord_t(scale_(0.1)));
}
#endif // BRIM_DEBUG_TO_SVG
all_loops = connect_brim_lines(std::move(all_loops), offset(islands_area_ex, float(SCALED_EPSILON)), float(flow.scaled_spacing()) * 2.f);
#ifdef BRIM_DEBUG_TO_SVG
{
SVG svg(debug_out_path("brim-connected-%d.svg", irun).c_str(), get_extents(all_loops));
svg.draw(union_ex(islands), "blue");
svg.draw(islands_area_ex, "green");
svg.draw(all_loops, "black", coord_t(scale_(0.1)));
}
#endif // BRIM_DEBUG_TO_SVG
const bool could_brim_intersects_skirt = std::any_of(print.objects().begin(), print.objects().end(), [&print, &brim_width_map, brim_width_max](PrintObject *object) {
const BrimType &bt = object->config().brim_type;
return (bt == btOuterOnly || bt == btOuterAndInner || bt == btAutoBrim) && print.config().skirt_distance.value < brim_width_map[object->id()];
});
const bool draft_shield = print.config().draft_shield != dsDisabled;
// If there is a possibility that brim intersects skirt, go through loops and split those extrusions
// The result is either the original Polygon or a list of Polylines
if (draft_shield && ! print.skirt().empty() && could_brim_intersects_skirt)
{
// Find the bounding polygons of the skirt
const Polygons skirt_inners = offset(dynamic_cast<ExtrusionLoop*>(print.skirt().entities.back())->polygon(),
-float(scale_(print.skirt_flow().spacing()))/2.f,
ClipperLib::jtRound,
float(scale_(0.1)));
const Polygons skirt_outers = offset(dynamic_cast<ExtrusionLoop*>(print.skirt().entities.front())->polygon(),
float(scale_(print.skirt_flow().spacing()))/2.f,
ClipperLib::jtRound,
float(scale_(0.1)));
// First calculate the trimming region.
ClipperLib_Z::Paths trimming;
{
ClipperLib_Z::Paths input_subject;
ClipperLib_Z::Paths input_clip;
for (const Polygon &poly : skirt_outers) {
input_subject.emplace_back();
ClipperLib_Z::Path &out = input_subject.back();
out.reserve(poly.points.size());
for (const Point &pt : poly.points)
out.emplace_back(pt.x(), pt.y(), 0);
}
for (const Polygon &poly : skirt_inners) {
input_clip.emplace_back();
ClipperLib_Z::Path &out = input_clip.back();
out.reserve(poly.points.size());
for (const Point &pt : poly.points)
out.emplace_back(pt.x(), pt.y(), 0);
}
// init Clipper
ClipperLib_Z::Clipper clipper;
// add polygons
clipper.AddPaths(input_subject, ClipperLib_Z::ptSubject, true);
clipper.AddPaths(input_clip, ClipperLib_Z::ptClip, true);
// perform operation
clipper.Execute(ClipperLib_Z::ctDifference, trimming, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero);
}
// Second, trim the extrusion loops with the trimming regions.
ClipperLib_Z::Paths loops_trimmed;
{
// Produce ClipperLib_Z::Paths from polylines (not necessarily closed).
ClipperLib_Z::Paths input_clip;
for (const Polyline &loop_pl : all_loops) {
input_clip.emplace_back();
ClipperLib_Z::Path& out = input_clip.back();
out.reserve(loop_pl.points.size());
int64_t loop_idx = &loop_pl - &all_loops.front();
for (const Point& pt : loop_pl.points)
// The Z coordinate carries index of the source loop.
out.emplace_back(pt.x(), pt.y(), loop_idx + 1);
}
// init Clipper
ClipperLib_Z::Clipper clipper;
clipper.ZFillFunction([](const ClipperLib_Z::IntPoint& e1bot, const ClipperLib_Z::IntPoint& e1top, const ClipperLib_Z::IntPoint& e2bot, const ClipperLib_Z::IntPoint& e2top, ClipperLib_Z::IntPoint& pt) {
// Assign a valid input loop identifier. Such an identifier is strictly positive, the next line is safe even in case one side of a segment
// hat the Z coordinate not set to the contour coordinate.
pt.z() = std::max(std::max(e1bot.z(), e1top.z()), std::max(e2bot.z(), e2top.z()));
});
// add polygons
clipper.AddPaths(input_clip, ClipperLib_Z::ptSubject, false);
clipper.AddPaths(trimming, ClipperLib_Z::ptClip, true);
// perform operation
ClipperLib_Z::PolyTree loops_trimmed_tree;
clipper.Execute(ClipperLib_Z::ctDifference, loops_trimmed_tree, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero);
ClipperLib_Z::PolyTreeToPaths(loops_trimmed_tree, loops_trimmed);
}
// Third, produce the extrusions, sorted by the source loop indices.
{
std::vector<std::pair<const ClipperLib_Z::Path*, size_t>> loops_trimmed_order;
loops_trimmed_order.reserve(loops_trimmed.size());
for (const ClipperLib_Z::Path &path : loops_trimmed) {
size_t input_idx = 0;
for (const ClipperLib_Z::IntPoint &pt : path)
if (pt.z() > 0) {
input_idx = (size_t)pt.z();
break;
}
assert(input_idx != 0);
loops_trimmed_order.emplace_back(&path, input_idx);
}
std::stable_sort(loops_trimmed_order.begin(), loops_trimmed_order.end(),
[](const std::pair<const ClipperLib_Z::Path*, size_t> &l, const std::pair<const ClipperLib_Z::Path*, size_t> &r) {
return l.second < r.second;
});
Point last_pt(0, 0);
for (size_t i = 0; i < loops_trimmed_order.size();) {
// Find all pieces that the initial loop was split into.
size_t j = i + 1;
for (; j < loops_trimmed_order.size() && loops_trimmed_order[i].second == loops_trimmed_order[j].second; ++ j) ;
const ClipperLib_Z::Path &first_path = *loops_trimmed_order[i].first;
if (i + 1 == j && first_path.size() > 3 && first_path.front().x() == first_path.back().x() && first_path.front().y() == first_path.back().y()) {
auto *loop = new ExtrusionLoop();
brim.entities.emplace_back(loop);
loop->paths.emplace_back(erBrim, float(flow.mm3_per_mm()), float(flow.width()), float(print.skirt_first_layer_height()));
Points &points = loop->paths.front().polyline.points;
points.reserve(first_path.size());
for (const ClipperLib_Z::IntPoint &pt : first_path)
points.emplace_back(coord_t(pt.x()), coord_t(pt.y()));
i = j;
} else {
//FIXME The path chaining here may not be optimal.
ExtrusionEntityCollection this_loop_trimmed;
this_loop_trimmed.entities.reserve(j - i);
for (; i < j; ++ i) {
this_loop_trimmed.entities.emplace_back(new ExtrusionPath(erBrim, float(flow.mm3_per_mm()), float(flow.width()), float(print.skirt_first_layer_height())));
const ClipperLib_Z::Path &path = *loops_trimmed_order[i].first;
Points &points = dynamic_cast<ExtrusionPath*>(this_loop_trimmed.entities.back())->polyline.points;
points.reserve(path.size());
for (const ClipperLib_Z::IntPoint &pt : path)
points.emplace_back(coord_t(pt.x()), coord_t(pt.y()));
}
chain_and_reorder_extrusion_entities(this_loop_trimmed.entities, &last_pt);
brim.entities.reserve(brim.entities.size() + this_loop_trimmed.entities.size());
append(brim.entities, std::move(this_loop_trimmed.entities));
this_loop_trimmed.entities.clear();
}
last_pt = brim.last_point();
}
}
} else {
extrusion_entities_append_loops_and_paths(brim.entities, std::move(all_loops), erBrim, float(flow.mm3_per_mm()), float(flow.width()), float(print.skirt_first_layer_height()));
}
make_inner_brim(print, top_level_objects_with_brim, bottom_layers_expolygons, brim);
return brim;
}
} // namespace Slic3r