orcaslicer/resources/shaders/mm_gouraud_wireframe.fs
lane.wei a9a228d071 ENH: wireframe: refine the rendering logic under paint
1. remove wireframe in 3d view, only keep in paint;
2. pass barycentric_coordinates from outside
3. add shortcut hints

Change-Id: I911e5cdf3475926d9527dc0839fdce072ed54746
(cherry picked from commit 6e16d0ccfb71741e55daabd757be9f9e7613e695)
2022-12-15 04:33:48 -05:00

107 lines
3.7 KiB
GLSL

#version 110
#define INTENSITY_CORRECTION 0.6
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 20.0
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define INTENSITY_AMBIENT 0.3
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
const float EPSILON = 0.0001;
//BBS: add grey and orange
//const vec3 GREY = vec3(0.9, 0.9, 0.9);
const vec3 ORANGE = vec3(0.8, 0.4, 0.0);
uniform vec4 uniform_color;
varying vec3 clipping_planes_dots;
varying vec4 model_pos;
uniform bool volume_mirrored;
struct SlopeDetection
{
bool actived;
float normal_z;
mat3 volume_world_normal_matrix;
};
uniform SlopeDetection slope;
//BBS: add wireframe logic
varying vec3 barycentric_coordinates;
float edgeFactor(float lineWidth) {
vec3 d = fwidth(barycentric_coordinates);
vec3 a3 = smoothstep(vec3(0.0), d * lineWidth, barycentric_coordinates);
return min(min(a3.x, a3.y), a3.z);
}
vec3 wireframe(vec3 fill, vec3 stroke, float lineWidth) {
return mix(stroke, fill, edgeFactor(lineWidth));
//if (any(lessThan(barycentric_coordinates, vec3(0.005, 0.005, 0.005))))
// return vec3(1.0, 0.0, 0.0);
//else
// return fill;
}
vec3 getWireframeColor(vec3 fill) {
float brightness = 0.2126 * fill.r + 0.7152 * fill.g + 0.0722 * fill.b;
return (brightness > 0.75) ? vec3(0.11, 0.165, 0.208) : vec3(0.988, 0.988, 0.988);
}
uniform bool show_wireframe;
void main()
{
if (any(lessThan(clipping_planes_dots, ZERO)))
discard;
vec3 color = uniform_color.rgb;
float alpha = uniform_color.a;
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
#ifdef FLIP_TRIANGLE_NORMALS
triangle_normal = -triangle_normal;
#endif
vec3 transformed_normal = normalize(slope.volume_world_normal_matrix * triangle_normal);
if (slope.actived && transformed_normal.z < slope.normal_z - EPSILON) {
//color = vec3(0.7, 0.7, 1.0);
color = color * 0.5 + ORANGE * 0.5;
alpha = 1.0;
}
if (volume_mirrored)
triangle_normal = -triangle_normal;
// First transform the normal into camera space and normalize the result.
vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
// x = diffuse, y = specular;
vec2 intensity = vec2(0.0, 0.0);
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source (no specular applied).
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
if (show_wireframe) {
vec3 wireframeColor = show_wireframe ? getWireframeColor(color) : color;
vec3 triangleColor = wireframe(color, wireframeColor, 1.0);
gl_FragColor = vec4(vec3(intensity.y) + triangleColor * intensity.x, alpha);
}
else {
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
}
}