orcaslicer/src/slic3r/GUI/Gizmos/GLGizmoFdmSupports.cpp
2020-05-18 16:08:21 +02:00

848 lines
32 KiB
C++

// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro.
#include "GLGizmoFdmSupports.hpp"
#include "slic3r/GUI/GLCanvas3D.hpp"
#include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp"
#include <GL/glew.h>
#include "slic3r/GUI/GUI_App.hpp"
#include "slic3r/GUI/PresetBundle.hpp"
#include "slic3r/GUI/Camera.hpp"
#include "libslic3r/Model.hpp"
namespace Slic3r {
namespace GUI {
static constexpr size_t MaxVertexBuffers = 50;
GLGizmoFdmSupports::GLGizmoFdmSupports(GLCanvas3D& parent, const std::string& icon_filename, unsigned int sprite_id)
: GLGizmoBase(parent, icon_filename, sprite_id)
, m_quadric(nullptr)
{
m_clipping_plane.reset(new ClippingPlane());
m_quadric = ::gluNewQuadric();
if (m_quadric != nullptr)
// using GLU_FILL does not work when the instance's transformation
// contains mirroring (normals are reverted)
::gluQuadricDrawStyle(m_quadric, GLU_FILL);
}
GLGizmoFdmSupports::~GLGizmoFdmSupports()
{
if (m_quadric != nullptr)
::gluDeleteQuadric(m_quadric);
}
bool GLGizmoFdmSupports::on_init()
{
m_shortcut_key = WXK_CONTROL_L;
m_desc["clipping_of_view"] = _L("Clipping of view") + ": ";
m_desc["reset_direction"] = _L("Reset direction");
m_desc["cursor_size"] = _L("Cursor size") + ": ";
m_desc["enforce_caption"] = _L("Left mouse button") + ": ";
m_desc["enforce"] = _L("Enforce supports");
m_desc["block_caption"] = _L("Right mouse button") + " ";
m_desc["block"] = _L("Block supports");
m_desc["remove_caption"] = _L("Shift + Left mouse button") + ": ";
m_desc["remove"] = _L("Remove selection");
m_desc["remove_all"] = _L("Remove all");
return true;
}
void GLGizmoFdmSupports::set_fdm_support_data(ModelObject* model_object, const Selection& selection)
{
const ModelObject* mo = m_c->selection_info() ? m_c->selection_info()->model_object() : nullptr;
if (! mo)
return;
if (mo && selection.is_from_single_instance()
&& (mo->id() != m_old_mo_id || mo->volumes.size() != m_old_volumes_size))
{
update_from_model_object();
m_old_mo_id = mo->id();
m_old_volumes_size = mo->volumes.size();
}
}
void GLGizmoFdmSupports::on_render() const
{
const Selection& selection = m_parent.get_selection();
glsafe(::glEnable(GL_BLEND));
glsafe(::glEnable(GL_DEPTH_TEST));
render_triangles(selection);
m_c->object_clipper()->render_cut();
render_cursor_circle();
glsafe(::glDisable(GL_BLEND));
}
void GLGizmoFdmSupports::render_triangles(const Selection& selection) const
{
if (m_setting_angle)
return;
const ModelObject* mo = m_c->selection_info()->model_object();
glsafe(::glEnable(GL_POLYGON_OFFSET_FILL));
ScopeGuard offset_fill_guard([]() { glsafe(::glDisable(GL_POLYGON_OFFSET_FILL)); } );
glsafe(::glPolygonOffset(-1.0, 1.0));
// Take care of the clipping plane. The normal of the clipping plane is
// saved with opposite sign than we need to pass to OpenGL (FIXME)
bool clipping_plane_active = m_c->object_clipper()->get_position() != 0.;
if (clipping_plane_active) {
const ClippingPlane* clp = m_c->object_clipper()->get_clipping_plane();
double clp_data[4];
memcpy(clp_data, clp->get_data(), 4 * sizeof(double));
for (int i=0; i<3; ++i)
clp_data[i] = -1. * clp_data[i];
glsafe(::glClipPlane(GL_CLIP_PLANE0, (GLdouble*)clp_data));
glsafe(::glEnable(GL_CLIP_PLANE0));
}
int mesh_id = -1;
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
++mesh_id;
const Transform3d trafo_matrix =
mo->instances[selection.get_instance_idx()]->get_transformation().get_matrix() *
mv->get_matrix();
glsafe(::glPushMatrix());
glsafe(::glMultMatrixd(trafo_matrix.data()));
// Now render both enforcers and blockers.
for (int i=0; i<2; ++i) {
glsafe(::glColor4f(i ? 1.f : 0.2f, 0.2f, i ? 0.2f : 1.0f, 0.5f));
for (const GLIndexedVertexArray& iva : m_ivas[mesh_id][i])
iva.render();
}
glsafe(::glPopMatrix());
}
if (clipping_plane_active)
glsafe(::glDisable(GL_CLIP_PLANE0));
}
void GLGizmoFdmSupports::render_cursor_circle() const
{
const Camera& camera = wxGetApp().plater()->get_camera();
float zoom = (float)camera.get_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
Size cnv_size = m_parent.get_canvas_size();
float cnv_half_width = 0.5f * (float)cnv_size.get_width();
float cnv_half_height = 0.5f * (float)cnv_size.get_height();
if ((cnv_half_width == 0.0f) || (cnv_half_height == 0.0f))
return;
Vec2d mouse_pos(m_parent.get_local_mouse_position()(0), m_parent.get_local_mouse_position()(1));
Vec2d center(mouse_pos(0) - cnv_half_width, cnv_half_height - mouse_pos(1));
center = center * inv_zoom;
glsafe(::glLineWidth(1.5f));
float color[3];
color[0] = 0.f;
color[1] = 1.f;
color[2] = 0.3f;
glsafe(::glColor3fv(color));
glsafe(::glDisable(GL_DEPTH_TEST));
glsafe(::glPushMatrix());
glsafe(::glLoadIdentity());
// ensure that the circle is renderered inside the frustrum
glsafe(::glTranslated(0.0, 0.0, -(camera.get_near_z() + 0.5)));
// ensure that the overlay fits the frustrum near z plane
double gui_scale = camera.get_gui_scale();
glsafe(::glScaled(gui_scale, gui_scale, 1.0));
glsafe(::glPushAttrib(GL_ENABLE_BIT));
glsafe(::glLineStipple(4, 0xAAAA));
glsafe(::glEnable(GL_LINE_STIPPLE));
::glBegin(GL_LINE_LOOP);
for (double angle=0; angle<2*M_PI; angle+=M_PI/20.)
::glVertex2f(GLfloat(center.x()+m_cursor_radius*cos(angle)), GLfloat(center.y()+m_cursor_radius*sin(angle)));
glsafe(::glEnd());
glsafe(::glPopAttrib());
glsafe(::glPopMatrix());
}
void GLGizmoFdmSupports::update_model_object() const
{
ModelObject* mo = m_c->selection_info()->model_object();
int idx = -1;
for (ModelVolume* mv : mo->volumes) {
++idx;
if (! mv->is_model_part())
continue;
for (int i=0; i<int(m_selected_facets[idx].size()); ++i)
mv->m_supported_facets.set_facet(i, m_selected_facets[idx][i]);
}
}
void GLGizmoFdmSupports::update_from_model_object()
{
wxBusyCursor wait;
const ModelObject* mo = m_c->selection_info()->model_object();
size_t num_of_volumes = 0;
for (const ModelVolume* mv : mo->volumes)
if (mv->is_model_part())
++num_of_volumes;
m_selected_facets.resize(num_of_volumes);
m_neighbors.resize(num_of_volumes);
m_ivas.clear();
m_ivas.resize(num_of_volumes);
for (size_t i=0; i<num_of_volumes; ++i) {
m_ivas[i][0].reserve(MaxVertexBuffers);
m_ivas[i][1].reserve(MaxVertexBuffers);
}
int volume_id = -1;
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
++volume_id;
// This mesh does not account for the possible Z up SLA offset.
const TriangleMesh* mesh = &mv->mesh();
m_selected_facets[volume_id].assign(mesh->its.indices.size(), FacetSupportType::NONE);
// Load current state from ModelVolume.
for (FacetSupportType type : {FacetSupportType::ENFORCER, FacetSupportType::BLOCKER}) {
const std::vector<int>& list = mv->m_supported_facets.get_facets(type);
for (int i : list)
m_selected_facets[volume_id][i] = type;
}
update_vertex_buffers(mesh, volume_id, FacetSupportType::ENFORCER);
update_vertex_buffers(mesh, volume_id, FacetSupportType::BLOCKER);
m_neighbors[volume_id].resize(3 * mesh->its.indices.size());
// Prepare vector of vertex_index - facet_index pairs to quickly find adjacent facets
for (size_t i=0; i<mesh->its.indices.size(); ++i) {
const stl_triangle_vertex_indices& ind = mesh->its.indices[i];
m_neighbors[volume_id][3*i] = std::make_pair(ind(0), i);
m_neighbors[volume_id][3*i+1] = std::make_pair(ind(1), i);
m_neighbors[volume_id][3*i+2] = std::make_pair(ind(2), i);
}
std::sort(m_neighbors[volume_id].begin(), m_neighbors[volume_id].end());
}
}
bool GLGizmoFdmSupports::is_mesh_point_clipped(const Vec3d& point) const
{
if (m_c->object_clipper()->get_position() == 0.)
return false;
auto sel_info = m_c->selection_info();
int active_inst = m_c->selection_info()->get_active_instance();
const ModelInstance* mi = sel_info->model_object()->instances[active_inst];
const Transform3d& trafo = mi->get_transformation().get_matrix();
Vec3d transformed_point = trafo * point;
transformed_point(2) += sel_info->get_sla_shift();
return m_c->object_clipper()->get_clipping_plane()->is_point_clipped(transformed_point);
}
bool operator<(const GLGizmoFdmSupports::NeighborData& a, const GLGizmoFdmSupports::NeighborData& b) {
return a.first < b.first;
}
// Following function is called from GLCanvas3D to inform the gizmo about a mouse/keyboard event.
// The gizmo has an opportunity to react - if it does, it should return true so that the Canvas3D is
// aware that the event was reacted to and stops trying to make different sense of it. If the gizmo
// concludes that the event was not intended for it, it should return false.
bool GLGizmoFdmSupports::gizmo_event(SLAGizmoEventType action, const Vec2d& mouse_position, bool shift_down, bool alt_down, bool control_down)
{
if (action == SLAGizmoEventType::MouseWheelUp
|| action == SLAGizmoEventType::MouseWheelDown) {
if (control_down) {
double pos = m_c->object_clipper()->get_position();
pos = action == SLAGizmoEventType::MouseWheelDown
? std::max(0., pos - 0.01)
: std::min(1., pos + 0.01);
m_c->object_clipper()->set_position(pos, true);
return true;
}
else if (alt_down) {
m_cursor_radius = action == SLAGizmoEventType::MouseWheelDown
? std::max(m_cursor_radius - CursorRadiusStep, CursorRadiusMin)
: std::min(m_cursor_radius + CursorRadiusStep, CursorRadiusMax);
m_parent.set_as_dirty();
return true;
}
}
if (action == SLAGizmoEventType::ResetClippingPlane) {
m_c->object_clipper()->set_position(-1., false);
return true;
}
if (action == SLAGizmoEventType::LeftDown
|| action == SLAGizmoEventType::RightDown
|| (action == SLAGizmoEventType::Dragging && m_button_down != Button::None)) {
FacetSupportType new_state = FacetSupportType::NONE;
if (! shift_down) {
if (action == SLAGizmoEventType::Dragging)
new_state = m_button_down == Button::Left
? FacetSupportType::ENFORCER
: FacetSupportType::BLOCKER;
else
new_state = action == SLAGizmoEventType::LeftDown
? FacetSupportType::ENFORCER
: FacetSupportType::BLOCKER;
}
const Camera& camera = wxGetApp().plater()->get_camera();
const Selection& selection = m_parent.get_selection();
const ModelObject* mo = m_c->selection_info()->model_object();
const ModelInstance* mi = mo->instances[selection.get_instance_idx()];
const Transform3d& instance_trafo = mi->get_transformation().get_matrix();
std::vector<std::vector<std::pair<Vec3f, size_t>>> hit_positions_and_facet_ids;
bool some_mesh_was_hit = false;
Vec3f normal = Vec3f::Zero();
Vec3f hit = Vec3f::Zero();
size_t facet = 0;
Vec3f closest_hit = Vec3f::Zero();
double closest_hit_squared_distance = std::numeric_limits<double>::max();
size_t closest_facet = 0;
int closest_hit_mesh_id = -1;
// Transformations of individual meshes
std::vector<Transform3d> trafo_matrices;
int mesh_id = -1;
// Cast a ray on all meshes, pick the closest hit and save it for the respective mesh
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
++mesh_id;
trafo_matrices.push_back(instance_trafo * mv->get_matrix());
hit_positions_and_facet_ids.push_back(std::vector<std::pair<Vec3f, size_t>>());
if (m_c->raycaster()->raycasters()[mesh_id]->unproject_on_mesh(
mouse_position,
trafo_matrices[mesh_id],
camera,
hit,
normal,
m_clipping_plane.get(),
&facet))
{
// In case this hit is clipped, skip it.
if (is_mesh_point_clipped(hit.cast<double>())) {
some_mesh_was_hit = true;
continue;
}
// Is this hit the closest to the camera so far?
double hit_squared_distance = (camera.get_position()-trafo_matrices[mesh_id]*hit.cast<double>()).squaredNorm();
if (hit_squared_distance < closest_hit_squared_distance) {
closest_hit_squared_distance = hit_squared_distance;
closest_facet = facet;
closest_hit_mesh_id = mesh_id;
closest_hit = hit;
}
}
}
// We now know where the ray hit, let's save it and cast another ray
if (closest_hit_mesh_id != size_t(-1)) // only if there is at least one hit
some_mesh_was_hit = true;
if (some_mesh_was_hit) {
// Now propagate the hits
mesh_id = -1;
const TriangleMesh* mesh = nullptr;
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
++mesh_id;
if (mesh_id == closest_hit_mesh_id) {
mesh = &mv->mesh();
break;
}
}
bool update_both = false;
const Transform3d& trafo_matrix = trafo_matrices[mesh_id];
// Calculate how far can a point be from the line (in mesh coords).
// FIXME: The scaling of the mesh can be non-uniform.
const Vec3d sf = Geometry::Transformation(trafo_matrix).get_scaling_factor();
const float avg_scaling = (sf(0) + sf(1) + sf(2))/3.;
const float limit = pow(m_cursor_radius/avg_scaling , 2.f);
const std::pair<Vec3f, size_t>& hit_and_facet = { closest_hit, closest_facet };
const std::vector<NeighborData>& neighbors = m_neighbors[mesh_id];
// Calculate direction from camera to the hit (in mesh coords):
Vec3f dir = ((trafo_matrix.inverse() * camera.get_position()).cast<float>() - hit_and_facet.first).normalized();
// A lambda to calculate distance from the centerline:
auto squared_distance_from_line = [&hit_and_facet, &dir](const Vec3f& point) -> float {
Vec3f diff = hit_and_facet.first - point;
return (diff - diff.dot(dir) * dir).squaredNorm();
};
// A lambda to determine whether this facet is potentionally visible (still can be obscured)
auto faces_camera = [&dir, &mesh](const size_t& facet) -> bool {
return (mesh->stl.facet_start[facet].normal.dot(dir) > 0.);
};
// Now start with the facet the pointer points to and check all adjacent facets. neighbors vector stores
// pairs of vertex_idx - facet_idx and is sorted with respect to the former. Neighboring facet index can be
// quickly found by finding a vertex in the list and read the respective facet ids.
std::vector<size_t> facets_to_select{hit_and_facet.second};
NeighborData vertex = std::make_pair(0, 0);
std::vector<bool> visited(m_selected_facets[mesh_id].size(), false); // keep track of facets we already processed
size_t facet_idx = 0; // index into facets_to_select
auto it = neighbors.end();
while (facet_idx < facets_to_select.size()) {
size_t facet = facets_to_select[facet_idx];
if (! visited[facet]) {
// check all three vertices and in case they're close enough, find the remaining facets
// and add them to the list to be proccessed later
for (size_t i=0; i<3; ++i) {
vertex.first = mesh->its.indices[facet](i); // vertex index
float dist = squared_distance_from_line(mesh->its.vertices[vertex.first]);
if (dist < limit) {
it = std::lower_bound(neighbors.begin(), neighbors.end(), vertex);
while (it != neighbors.end() && it->first == vertex.first) {
if (it->second != facet && faces_camera(it->second))
facets_to_select.push_back(it->second);
++it;
}
}
}
visited[facet] = true;
}
++facet_idx;
}
std::vector<size_t> new_facets;
new_facets.reserve(facets_to_select.size());
// Now just select all facets that passed and remember which
// ones have really changed state.
for (size_t next_facet : facets_to_select) {
FacetSupportType& facet = m_selected_facets[mesh_id][next_facet];
if (facet != new_state) {
if (facet != FacetSupportType::NONE) {
// this triangle is currently in the other VBA.
// Both VBAs need to be refreshed.
update_both = true;
}
facet = new_state;
new_facets.push_back(next_facet);
}
}
if (! new_facets.empty()) {
if (new_state != FacetSupportType::NONE) {
// append triangles into the respective VBA
update_vertex_buffers(mesh, mesh_id, new_state, &new_facets);
if (update_both) {
auto other = new_state == FacetSupportType::ENFORCER
? FacetSupportType::BLOCKER
: FacetSupportType::ENFORCER;
update_vertex_buffers(mesh, mesh_id, other); // regenerate the other VBA
}
}
else {
update_vertex_buffers(mesh, mesh_id, FacetSupportType::ENFORCER);
update_vertex_buffers(mesh, mesh_id, FacetSupportType::BLOCKER);
}
}
if (m_button_down == Button::None)
m_button_down = ((action == SLAGizmoEventType::LeftDown) ? Button::Left : Button::Right);
return true;
}
if (action == SLAGizmoEventType::Dragging && m_button_down != Button::None)
return true;
}
if ((action == SLAGizmoEventType::LeftUp || action == SLAGizmoEventType::RightUp)
&& m_button_down != Button::None) {
// Take snapshot and update ModelVolume data.
wxString action_name = shift_down
? _L("Remove selection")
: (m_button_down == Button::Left
? _L("Add supports")
: _L("Block supports"));
Plater::TakeSnapshot(wxGetApp().plater(), action_name);
update_model_object();
m_button_down = Button::None;
return true;
}
return false;
}
void GLGizmoFdmSupports::update_vertex_buffers(const TriangleMesh* mesh,
int mesh_id,
FacetSupportType type,
const std::vector<size_t>* new_facets)
{
std::vector<GLIndexedVertexArray>& ivas = m_ivas[mesh_id][type == FacetSupportType::ENFORCER ? 0 : 1];
// lambda to push facet into vertex buffer
auto push_facet = [this, &mesh, &mesh_id](size_t idx, GLIndexedVertexArray& iva) {
for (int i=0; i<3; ++i)
iva.push_geometry(
mesh->its.vertices[mesh->its.indices[idx](i)].cast<double>(),
m_c->raycaster()->raycasters()[mesh_id]->get_triangle_normal(idx).cast<double>()
);
size_t num = iva.triangle_indices_size;
iva.push_triangle(num, num+1, num+2);
};
if (ivas.size() == MaxVertexBuffers || ! new_facets) {
// If there are too many or they should be regenerated, make one large
// GLVertexBufferArray.
ivas.clear(); // destructors release geometry
ivas.push_back(GLIndexedVertexArray());
bool pushed = false;
for (size_t facet_idx=0; facet_idx<m_selected_facets[mesh_id].size(); ++facet_idx) {
if (m_selected_facets[mesh_id][facet_idx] == type) {
push_facet(facet_idx, ivas.back());
pushed = true;
}
}
if (pushed)
ivas.back().finalize_geometry(true);
else
ivas.pop_back();
} else {
// we are only appending - let's make new vertex array and let the old ones live
ivas.push_back(GLIndexedVertexArray());
for (size_t facet_idx : *new_facets)
push_facet(facet_idx, ivas.back());
if (! new_facets->empty())
ivas.back().finalize_geometry(true);
else
ivas.pop_back();
}
}
void GLGizmoFdmSupports::select_facets_by_angle(float threshold_deg, bool overwrite, bool block)
{
float threshold = (M_PI/180.)*threshold_deg;
const Selection& selection = m_parent.get_selection();
const ModelObject* mo = m_c->selection_info()->model_object();
const ModelInstance* mi = mo->instances[selection.get_instance_idx()];
int mesh_id = -1;
for (const ModelVolume* mv : mo->volumes) {
if (! mv->is_model_part())
continue;
++mesh_id;
const Transform3d trafo_matrix = mi->get_matrix(true) * mv->get_matrix(true);
Vec3f down = (trafo_matrix.inverse() * (-Vec3d::UnitZ())).cast<float>().normalized();
Vec3f limit = (trafo_matrix.inverse() * Vec3d(std::sin(threshold), 0, -std::cos(threshold))).cast<float>().normalized();
float dot_limit = limit.dot(down);
// Now calculate dot product of vert_direction and facets' normals.
int idx = -1;
for (const stl_facet& facet : mv->mesh().stl.facet_start) {
++idx;
if (facet.normal.dot(down) > dot_limit && (overwrite || m_selected_facets[mesh_id][idx] == FacetSupportType::NONE))
m_selected_facets[mesh_id][idx] = block
? FacetSupportType::BLOCKER
: FacetSupportType::ENFORCER;
}
update_vertex_buffers(&mv->mesh(), mesh_id, FacetSupportType::ENFORCER);
update_vertex_buffers(&mv->mesh(), mesh_id, FacetSupportType::BLOCKER);
}
Plater::TakeSnapshot(wxGetApp().plater(), block ? _L("Block supports by angle")
: _L("Add supports by angle"));
update_model_object();
m_parent.set_as_dirty();
m_setting_angle = false;
}
void GLGizmoFdmSupports::on_render_input_window(float x, float y, float bottom_limit)
{
if (! m_c->selection_info()->model_object())
return;
const float approx_height = m_imgui->scaled(18.0f);
y = std::min(y, bottom_limit - approx_height);
m_imgui->set_next_window_pos(x, y, ImGuiCond_Always);
if (! m_setting_angle) {
m_imgui->begin(on_get_name(), ImGuiWindowFlags_NoMove | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoCollapse);
// First calculate width of all the texts that are could possibly be shown. We will decide set the dialog width based on that:
const float clipping_slider_left = std::max(m_imgui->calc_text_size(m_desc.at("clipping_of_view")).x, m_imgui->calc_text_size(m_desc.at("reset_direction")).x) + m_imgui->scaled(1.5f);
const float cursor_slider_left = m_imgui->calc_text_size(m_desc.at("cursor_size")).x + m_imgui->scaled(1.f);
const float button_width = m_imgui->calc_text_size(m_desc.at("remove_all")).x + m_imgui->scaled(1.f);
const float minimal_slider_width = m_imgui->scaled(4.f);
float caption_max = 0.f;
float total_text_max = 0.;
for (const std::string& t : {"enforce", "block", "remove"}) {
caption_max = std::max(caption_max, m_imgui->calc_text_size(m_desc.at(t+"_caption")).x);
total_text_max = std::max(total_text_max, caption_max + m_imgui->calc_text_size(m_desc.at(t)).x);
}
caption_max += m_imgui->scaled(1.f);
total_text_max += m_imgui->scaled(1.f);
float window_width = minimal_slider_width + std::max(cursor_slider_left, clipping_slider_left);
window_width = std::max(window_width, total_text_max);
window_width = std::max(window_width, button_width);
auto draw_text_with_caption = [this, &caption_max](const wxString& caption, const wxString& text) {
static const ImVec4 ORANGE(1.0f, 0.49f, 0.22f, 1.0f);
ImGui::PushStyleColor(ImGuiCol_Text, ORANGE);
m_imgui->text(caption);
ImGui::PopStyleColor();
ImGui::SameLine(caption_max);
m_imgui->text(text);
};
for (const std::string& t : {"enforce", "block", "remove"})
draw_text_with_caption(m_desc.at(t + "_caption"), m_desc.at(t));
m_imgui->text("");
if (m_imgui->button("Autoset by angle...")) {
m_setting_angle = true;
}
ImGui::SameLine();
if (m_imgui->button(m_desc.at("remove_all"))) {
ModelObject* mo = m_c->selection_info()->model_object();
int idx = -1;
for (ModelVolume* mv : mo->volumes) {
++idx;
if (mv->is_model_part()) {
m_selected_facets[idx].assign(m_selected_facets[idx].size(), FacetSupportType::NONE);
mv->m_supported_facets.clear();
update_vertex_buffers(&mv->mesh(), idx, FacetSupportType::ENFORCER);
update_vertex_buffers(&mv->mesh(), idx, FacetSupportType::BLOCKER);
m_parent.set_as_dirty();
}
}
}
const float max_tooltip_width = ImGui::GetFontSize() * 20.0f;
m_imgui->text(m_desc.at("cursor_size"));
ImGui::SameLine(clipping_slider_left);
ImGui::PushItemWidth(window_width - clipping_slider_left);
ImGui::SliderFloat(" ", &m_cursor_radius, CursorRadiusMin, CursorRadiusMax, "%.2f");
if (ImGui::IsItemHovered()) {
ImGui::BeginTooltip();
ImGui::PushTextWrapPos(max_tooltip_width);
ImGui::TextUnformatted(_L("Alt + Mouse wheel").ToUTF8().data());
ImGui::PopTextWrapPos();
ImGui::EndTooltip();
}
ImGui::Separator();
if (m_c->object_clipper()->get_position() == 0.f)
m_imgui->text(m_desc.at("clipping_of_view"));
else {
if (m_imgui->button(m_desc.at("reset_direction"))) {
wxGetApp().CallAfter([this](){
m_c->object_clipper()->set_position(-1., false);
});
}
}
ImGui::SameLine(clipping_slider_left);
ImGui::PushItemWidth(window_width - clipping_slider_left);
float clp_dist = m_c->object_clipper()->get_position();
if (ImGui::SliderFloat(" ", &clp_dist, 0.f, 1.f, "%.2f"))
m_c->object_clipper()->set_position(clp_dist, true);
if (ImGui::IsItemHovered()) {
ImGui::BeginTooltip();
ImGui::PushTextWrapPos(max_tooltip_width);
ImGui::TextUnformatted(_L("Ctrl + Mouse wheel").ToUTF8().data());
ImGui::PopTextWrapPos();
ImGui::EndTooltip();
}
m_imgui->end();
if (m_setting_angle) {
m_parent.show_slope(false);
m_parent.set_slope_range({90.f - m_angle_threshold_deg, 90.f - m_angle_threshold_deg});
m_parent.use_slope(true);
m_parent.set_as_dirty();
}
}
else {
std::string name = "Autoset custom supports";
m_imgui->begin(wxString(name), ImGuiWindowFlags_NoMove | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoCollapse);
m_imgui->text("Threshold:");
ImGui::SameLine();
if (m_imgui->slider_float("", &m_angle_threshold_deg, 0.f, 90.f, "%.f"))
m_parent.set_slope_range({90.f - m_angle_threshold_deg, 90.f - m_angle_threshold_deg});
m_imgui->checkbox(wxString("Overwrite already selected facets"), m_overwrite_selected);
if (m_imgui->button("Enforce"))
select_facets_by_angle(m_angle_threshold_deg, m_overwrite_selected, false);
ImGui::SameLine();
if (m_imgui->button("Block"))
select_facets_by_angle(m_angle_threshold_deg, m_overwrite_selected, true);
ImGui::SameLine();
if (m_imgui->button("Cancel"))
m_setting_angle = false;
m_imgui->end();
if (! m_setting_angle) {
m_parent.use_slope(false);
m_parent.set_as_dirty();
}
}
}
bool GLGizmoFdmSupports::on_is_activable() const
{
const Selection& selection = m_parent.get_selection();
if (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptFFF
|| !selection.is_single_full_instance())
return false;
// Check that none of the selected volumes is outside. Only SLA auxiliaries (supports) are allowed outside.
const Selection::IndicesList& list = selection.get_volume_idxs();
for (const auto& idx : list)
if (selection.get_volume(idx)->is_outside)
return false;
return true;
}
bool GLGizmoFdmSupports::on_is_selectable() const
{
return (wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptFFF );
}
std::string GLGizmoFdmSupports::on_get_name() const
{
return (_(L("FDM Support Editing")) + " [L]").ToUTF8().data();
}
CommonGizmosDataID GLGizmoFdmSupports::on_get_requirements() const
{
return CommonGizmosDataID(
int(CommonGizmosDataID::SelectionInfo)
| int(CommonGizmosDataID::InstancesHider)
| int(CommonGizmosDataID::Raycaster)
| int(CommonGizmosDataID::HollowedMesh)
| int(CommonGizmosDataID::ObjectClipper)
| int(CommonGizmosDataID::SupportsClipper));
}
void GLGizmoFdmSupports::on_set_state()
{
if (m_state == m_old_state)
return;
if (m_state == On && m_old_state != On) { // the gizmo was just turned on
{
Plater::TakeSnapshot snapshot(wxGetApp().plater(), _(L("FDM gizmo turned on")));
}
if (! m_parent.get_gizmos_manager().is_serializing()) {
wxGetApp().CallAfter([]() {
wxGetApp().plater()->enter_gizmos_stack();
});
}
}
if (m_state == Off && m_old_state != Off) { // the gizmo was just turned Off
// we are actually shutting down
if (m_setting_angle) {
m_setting_angle = false;
m_parent.use_slope(false);
}
wxGetApp().plater()->leave_gizmos_stack();
{
Plater::TakeSnapshot snapshot(wxGetApp().plater(), _(L("FDM gizmo turned off")));
}
m_old_mo_id = -1;
m_ivas.clear();
m_neighbors.clear();
m_selected_facets.clear();
}
m_old_state = m_state;
}
void GLGizmoFdmSupports::on_start_dragging()
{
}
void GLGizmoFdmSupports::on_stop_dragging()
{
}
void GLGizmoFdmSupports::on_load(cereal::BinaryInputArchive& ar)
{
update_from_model_object();
}
void GLGizmoFdmSupports::on_save(cereal::BinaryOutputArchive& ar) const
{
}
} // namespace GUI
} // namespace Slic3r