#version 110

#define INTENSITY_CORRECTION 0.6

// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
#define LIGHT_TOP_DIFFUSE    (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR   (0.125 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS  20.0

// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
#define LIGHT_FRONT_DIFFUSE  (0.3 * INTENSITY_CORRECTION)

#define INTENSITY_AMBIENT    0.3

const vec3  ZERO    = vec3(0.0, 0.0, 0.0);
const float EPSILON = 0.0001;
//BBS: add grey and orange
//const vec3 GREY = vec3(0.9, 0.9, 0.9);
const vec3 ORANGE = vec3(0.8, 0.4, 0.0);
const vec3 LightRed = vec3(0.78, 0.0, 0.0);
const vec3 LightBlue = vec3(0.73, 1.0, 1.0);
uniform vec4 uniform_color;

varying vec3 clipping_planes_dots;
varying vec4 model_pos;
varying vec4 world_pos;
uniform bool volume_mirrored;

struct SlopeDetection
{
    bool actived;
	 float normal_z;
    mat3 volume_world_normal_matrix;
};
uniform SlopeDetection slope;

void main()
{
    if (any(lessThan(clipping_planes_dots, ZERO)))
        discard;
    vec3  color = uniform_color.rgb;
    float alpha = uniform_color.a;

    vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
    if (volume_mirrored)
    {
        triangle_normal = -triangle_normal;
    }
    vec3 transformed_normal = normalize(slope.volume_world_normal_matrix * triangle_normal);
     
    if (slope.actived) {
        if(world_pos.z<0.1&&world_pos.z>-0.1)
         {
              color = LightBlue;
              alpha = 1.0;
         }
         else if( transformed_normal.z < slope.normal_z - EPSILON)
        {
            color = color * 0.5 + LightRed * 0.5;
            alpha = 1.0;
        }
    }
    // First transform the normal into camera space and normalize the result.
    vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal);

    // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
    // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
    float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);

    // x = diffuse, y = specular;
    vec2 intensity = vec2(0.0, 0.0);
    intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
    vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
    intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);

    // Perform the same lighting calculation for the 2nd light source (no specular applied).
    NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
    intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;

    gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
}