package Slic3r::Layer; use Moo; use Math::Clipper ':all'; use Math::ConvexHull qw(convex_hull); use Slic3r::Geometry qw(polygon_lines points_coincide angle3points polyline_lines); use XXX; use constant PI => 4 * atan2(1, 1); use constant A => 0; use constant B => 1; # a sequential number of layer, starting at 0 has 'id' => ( is => 'ro', #isa => 'Int', required => 1, ); # collection of spare segments generated by slicing the original geometry; # these need to be merged in continuos (closed) polylines has 'lines' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Line]', default => sub { [] }, ); # collection of surfaces generated by slicing the original geometry has 'surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # collection of surfaces representing bridges has 'bridges' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface::Bridge]', default => sub { [] }, ); # collection of surfaces to make perimeters for has 'perimeter_surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # ordered collection of extrusion paths to build all perimeters has 'perimeters' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # ordered collection of extrusion paths to build skirt loops has 'skirts' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # collection of surfaces generated by offsetting the innermost perimeter(s) # they represent boundaries of areas to fill has 'fill_surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface::Collection]', default => sub { [] }, ); # ordered collection of extrusion paths to fill surfaces has 'fills' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionPath]', default => sub { [] }, ); sub z { my $self = shift; return $self->id * $Slic3r::layer_height / $Slic3r::resolution; } sub add_surface { my $self = shift; my (@vertices) = @_; # convert arrayref points to Point objects @vertices = map Slic3r::Point->cast($_), @vertices; my $surface = Slic3r::Surface->new( contour => Slic3r::Polyline::Closed->new(points => \@vertices), ); push @{ $self->surfaces }, $surface; # make sure our contour has its points in counter-clockwise order $surface->contour->make_counter_clockwise; return $surface; } sub add_line { my $self = shift; my ($line) = @_; $line = Slic3r::Line->cast($line); return if $line->a->coincides_with($line->b); push @{ $self->lines }, $line; return $line; } sub remove_line { my $self = shift; my ($line) = @_; @{ $self->lines } = grep $_ ne $line, @{ $self->lines }; } sub remove_surface { my $self = shift; my ($surface) = @_; @{ $self->surfaces } = grep $_ ne $surface, @{ $self->surfaces }; } # build polylines of lines which do not already belong to a surface sub make_polylines { my $self = shift; my @lines = (); push @lines, map $_->p, @{$self->lines}; #use Slic3r::SVG; #Slic3r::SVG::output(undef, "lines.svg", # lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ], # red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ], #); my $get_point_id = sub { sprintf "%d,%d", @{$_[0]} }; my (%pointmap) = (); foreach my $line (@lines) { my $point_id = $get_point_id->($line->[A]); $pointmap{$point_id} ||= []; push @{ $pointmap{$point_id} }, $line; } my $n = 0; my @polylines = (); while (my $first_line = shift @lines) { my @points = @$first_line; my %seen_points = map { $get_point_id->($points[$_]) => $_ } 0..1; CYCLE: while (1) { my $next_lines = $pointmap{ $get_point_id->($points[-1]) } or die sprintf "No lines start at point %d,%d. This shouldn't happen", @{$points[-1]}; last CYCLE if !@$next_lines; my @ordered_next_lines = sort { angle3points($points[-1], $points[-2], $next_lines->[$a][B]) <=> angle3points($points[-1], $points[-2], $next_lines->[$b][B]) } 0..$#$next_lines; #if (@$next_lines > 1) { # Slic3r::SVG::output(undef, "next_line.svg", # lines => $next_lines, # red_lines => [ polyline_lines([@points]) ], # green_lines => [ $next_lines->[ $ordered_next_lines[0] ] ], # ); #} my ($next_line) = splice @$next_lines, $ordered_next_lines[0], 1; push @points, $next_line->[B]; my $point_id = $get_point_id->($points[-1]); if ($seen_points{$point_id}) { splice @points, 0, $seen_points{$point_id}; last CYCLE; } $seen_points{$point_id} = $#points; } if (@points < 4 || !points_coincide($points[0], $points[-1])) { next; } pop @points; Slic3r::debugf "Discovered polyline of %d points\n", scalar(@points); push @polylines, [@points]; } #Slic3r::SVG::output(undef, "polylines.svg", # polylines => [ @polylines ], #); return [ map Slic3r::Polyline::Closed->cast($_), @polylines ]; } sub make_surfaces { my $self = shift; my ($polylines) = @_; #use Slic3r::SVG; #Slic3r::SVG::output_polygons($main::print, "polylines.svg", [ map $_->p, @$polylines ]); # count how many other polylines enclose each polyline # even = contour; odd = hole my %enclosing_polylines = (); my %enclosing_polylines_count = (); my $max_depth = 0; foreach my $polyline (@$polylines) { # a polyline encloses another one if any point of it is enclosed # in the other my $point = $polyline->points->[0]; my $ordered_id = $polyline->id; # find polylines contaning $point, and thus $polyline $enclosing_polylines{$polyline} = [ grep $_->id ne $ordered_id && $_->encloses_point($point), @$polylines ]; $enclosing_polylines_count{$polyline} = scalar @{ $enclosing_polylines{$polyline} }; $max_depth = $enclosing_polylines_count{$polyline} if $enclosing_polylines_count{$polyline} > $max_depth; } # make a cache for contours and surfaces my %surfaces = (); # contour => surface # start looking at most inner polylines for (; $max_depth > -1; $max_depth--) { foreach my $polyline (@$polylines) { next unless $enclosing_polylines_count{$polyline} == $max_depth; my $surface; if ($enclosing_polylines_count{$polyline} % 2 == 0) { # this is a contour $polyline->make_counter_clockwise; $surface = Slic3r::Surface->new(contour => $polyline); } else { # this is a hole $polyline->make_clockwise; # find the enclosing polyline having immediately close depth my ($contour) = grep $enclosing_polylines_count{$_} == ($max_depth-1), @{ $enclosing_polylines{$polyline} }; if ($surfaces{$contour}) { $surface = $surfaces{$contour}; $surface->add_hole($polyline); } else { $surface = Slic3r::Surface->new( contour => $contour, holes => [$polyline], ); $surfaces{$contour} = $surface; } } # check whether we already have this surface next if grep $_->id eq $surface->id, @{ $self->surfaces }; $surface->surface_type('internal'); push @{ $self->surfaces }, $surface; Slic3r::debugf "New surface: %s (%d holes: %s)\n", $surface->id, scalar @{$surface->holes}, join(', ', map $_->id, @{$surface->holes}) || 'none' if $Slic3r::debug; } } } sub merge_contiguous_surfaces { my $self = shift; if ($Slic3r::debug) { Slic3r::debugf "Initial surfaces (%d):\n", scalar @{ $self->surfaces }; Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id, ($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces }; #Slic3r::SVG::output_polygons(undef, "polygons-before.svg", [ map $_->contour->p, @{$self->surfaces} ]); } my %resulting_surfaces = (); # only merge surfaces with same type foreach my $type (qw(bottom top internal)) { my $clipper = Math::Clipper->new; my @surfaces = grep $_->surface_type eq $type, @{$self->surfaces} or next; #Slic3r::SVG::output_polygons($main::print, "polygons-$type-before.svg", [ map $_->contour->p, @surfaces ]); $clipper->add_subject_polygons([ map $_->contour->p, @surfaces ]); my $result = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO); $clipper->clear; my @extra_holes = map @{$_->{holes}}, @$result; $result = [ map $_->{outer}, @$result ]; #Slic3r::SVG::output_polygons($main::print, "polygons-$type-union.svg", $result); # subtract bottom or top surfaces from internal if ($type eq 'internal') { $clipper->add_subject_polygons($result); $clipper->add_clip_polygons([ map $_->{outer}, @{$resulting_surfaces{$_}} ]) for qw(bottom top); $result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); $clipper->clear; } # apply holes $clipper->add_subject_polygons($result); $result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); $clipper->clear; $clipper->add_subject_polygons($result); $clipper->add_clip_polygons([ @extra_holes ]) if @extra_holes; $clipper->add_clip_polygons([ map $_->p, map @{$_->holes}, @surfaces ]); my $result2 = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); $resulting_surfaces{$type} = $result2; } # remove overlapping surfaces # (remove anything that is not internal from areas covered by internal surfaces) # this may happen because of rounding of Z coordinates: the model could have # features smaller than our layer height, so we'd get more things on a single # layer if (0) { # not proven to be necessary until now my $clipper = Math::Clipper->new; foreach my $type (qw(bottom top)) { $clipper->clear; $clipper->add_subject_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{$type}} ]); $clipper->add_clip_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{internal}} ]); $resulting_surfaces{$type} = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); } } # save surfaces @{ $self->surfaces } = (); foreach my $type (keys %resulting_surfaces) { foreach my $p (@{ $resulting_surfaces{$type} }) { push @{ $self->surfaces }, Slic3r::Surface->new( surface_type => $type, contour => Slic3r::Polyline::Closed->cast($p->{outer}), holes => [ map Slic3r::Polyline::Closed->cast($_), @{$p->{holes}} ], ); } } if ($Slic3r::debug) { Slic3r::debugf "Final surfaces (%d):\n", scalar @{ $self->surfaces }; Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id, ($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces }; } } sub remove_small_surfaces { my $self = shift; my @good_surfaces = (); foreach my $surface (@{$self->surfaces}) { next if !$surface->contour->is_printable; @{$surface->holes} = grep $_->is_printable, @{$surface->holes}; push @good_surfaces, $surface; } @{$self->surfaces} = @good_surfaces; } sub remove_small_perimeters { my $self = shift; my @good_perimeters = grep $_->is_printable, @{$self->perimeters}; Slic3r::debugf "removed %d unprintable perimeters\n", (@{$self->perimeters} - @good_perimeters) if @good_perimeters != @{$self->perimeters}; @{$self->perimeters} = @good_perimeters; } # make bridges printable sub process_bridges { my $self = shift; return if $self->id == 0; # a bottom surface on a layer > 0 is either a bridge or a overhang # or a combination of both my @bottom_surfaces = grep $_->surface_type eq 'bottom', @{$self->surfaces} or return; my @supporting_surfaces = grep $_->surface_type =~ /internal/, @{$self->surfaces}; SURFACE: foreach my $surface (@bottom_surfaces) { # since we can't print concave bridges, we transform the surface # in a convex polygon; this will print thin membranes eventually my $surface_p = convex_hull($surface->contour->p); # find all supported edges (as polylines, thus keeping notion of # consecutive supported edges) my @supported_polylines = (); { my @current_polyline = (); EDGE: foreach my $edge (Slic3r::Geometry::polygon_lines($surface_p)) { for (@supporting_surfaces) { local $Slic3r::Geometry::epsilon = 1E+7; if (Slic3r::Geometry::polygon_has_subsegment($_->contour->p, $edge)) { push @current_polyline, $edge; next EDGE; } } if (@current_polyline) { push @supported_polylines, [@current_polyline]; @current_polyline = (); } } push @supported_polylines, [@current_polyline] if @current_polyline; } # defensive programming, this shouldn't happen if (@supported_polylines == 0) { Slic3r::debugf "Found bridge/overhang with no supports on layer %d; ignoring\n", $self->id; next SURFACE; } if (@supported_polylines == 1) { Slic3r::debugf "Found bridge/overhang with only one support on layer %d; ignoring\n", $self->id; next SURFACE; } # now connect the first point to the last of each polyline @supported_polylines = map [ $_->[0]->[0], $_->[-1]->[-1] ], @supported_polylines; # @supported_polylines becomes actually an array of lines # if we got more than two supports, get the longest two if (@supported_polylines > 2) { my %lengths = map { $_ => Slic3r::Geometry::line_length($_) } @supported_polylines; @supported_polylines = sort { $lengths{"$a"} <=> $lengths{"$b"} } @supported_polylines; @supported_polylines = @supported_polylines[-2,-1]; } # connect the midpoints, that will give the the optimal infill direction my @midpoints = map Slic3r::Geometry::midpoint($_), @supported_polylines; my $bridge_angle = -Slic3r::Geometry::rad2deg(Slic3r::Geometry::line_atan(\@midpoints) + PI/2); Slic3r::debugf "Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle; # detect which neighbor surfaces are now supporting our bridge my @supporting_neighbor_surfaces = (); foreach my $supporting_surface (@supporting_surfaces) { local $Slic3r::Geometry::epsilon = 1E+7; push @supporting_neighbor_surfaces, $supporting_surface if grep Slic3r::Geometry::polygon_has_vertex($supporting_surface->contour->p, $_), map $_->[0], @supported_polylines; } # defensive programming, this shouldn't happen if (@supporting_neighbor_surfaces == 0) { Slic3r::debugf "Couldn't find supporting surfaces on layer %d; ignoring\n", $self->id; next SURFACE; } # now, extend our bridge by taking a portion of supporting surfaces { # offset the bridge by the specified amount of mm my $bridge_offset = ${ offset([$surface_p], $Slic3r::bridge_overlap / $Slic3r::resolution, $Slic3r::resolution * 100, JT_MITER, 2) }[0]; # calculate the new bridge my $clipper = Math::Clipper->new; $clipper->add_subject_polygon($surface_p); $clipper->add_subject_polygons([ map $_->p, @supporting_neighbor_surfaces ]); $clipper->add_clip_polygon($bridge_offset); my $intersection = $clipper->execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO); push @{$self->bridges}, map Slic3r::Surface::Bridge->cast_from_polygon($_, surface_type => 'bottom', bridge_angle => $bridge_angle, ), @$intersection; } } } # generates a set of surfaces that will be used to make perimeters # thus, we need to merge internal surfaces and bridges sub detect_perimeter_surfaces { my $self = shift; # little optimization: skip the Clipper UNION if we have no bridges if (!@{$self->bridges}) { push @{$self->perimeter_surfaces}, @{$self->surfaces}; } else { my $clipper = Math::Clipper->new; $clipper->add_subject_polygons([ map $_->p, grep $_->surface_type =~ /internal/, @{$self->surfaces} ]); $clipper->add_clip_polygons([ map $_->p, @{$self->bridges} ]); my $union = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO); push @{$self->perimeter_surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'), @$union; push @{$self->perimeter_surfaces}, grep $_->surface_type !~ /internal/ && ($_->surface_type ne 'bottom' || $self->id == 0), @{$self->surfaces}; } } # splits fill_surfaces in internal and bridge surfaces sub split_bridges_fills { my $self = shift; my $clipper = Math::Clipper->new; foreach my $surf_coll (@{$self->fill_surfaces}) { my @surfaces = @{$surf_coll->surfaces}; @{$surf_coll->surfaces} = (); # intersect fill_surfaces with bridges to get actual bridges foreach my $bridge (@{$self->bridges}) { $clipper->clear; $clipper->add_subject_polygons([ map $_->p, @surfaces ]); $clipper->add_clip_polygon($bridge->contour->p); my $intersection = $clipper->ex_execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO); push @{$surf_coll->surfaces}, map Slic3r::Surface::Bridge->cast_from_expolygon($_, surface_type => 'bottom', bridge_angle => $bridge->bridge_angle, ), @$intersection; } # difference between fill_surfaces and bridges are the other surfaces foreach my $surface (@surfaces) { $clipper->clear; $clipper->add_subject_polygons([ $surface->p ]); $clipper->add_clip_polygons([ map $_->contour->p, @{$self->bridges} ]); my $difference = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); push @{$surf_coll->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => $surface->surface_type), @$difference; } } } 1;