Merge branch 'lm_aabb_improvements'
This commit is contained in:
commit
e6317cdefb
8 changed files with 166 additions and 840 deletions
|
@ -1,18 +1,11 @@
|
|||
#include <cmath>
|
||||
#include <libslic3r/SLA/Common.hpp>
|
||||
#include <libslic3r/SLA/Concurrency.hpp>
|
||||
#include <libslic3r/SLA/SupportTree.hpp>
|
||||
#include <libslic3r/SLA/SpatIndex.hpp>
|
||||
#include <libslic3r/SLA/EigenMesh3D.hpp>
|
||||
#include <libslic3r/SLA/Contour3D.hpp>
|
||||
#include <libslic3r/SLA/Clustering.hpp>
|
||||
#include <libslic3r/SLA/Hollowing.hpp>
|
||||
|
||||
|
||||
// Workaround: IGL signed_distance.h will define PI in the igl namespace.
|
||||
#undef PI
|
||||
|
||||
// HEAVY headers... takes eternity to compile
|
||||
#include <libslic3r/AABBTreeIndirect.hpp>
|
||||
|
||||
// for concave hull merging decisions
|
||||
#include <libslic3r/SLA/BoostAdapter.hpp>
|
||||
|
@ -23,24 +16,23 @@
|
|||
#pragma warning(disable: 4244)
|
||||
#pragma warning(disable: 4267)
|
||||
#endif
|
||||
#include <igl/ray_mesh_intersect.h>
|
||||
#include <igl/point_mesh_squared_distance.h>
|
||||
|
||||
|
||||
#include <igl/remove_duplicate_vertices.h>
|
||||
#include <igl/collapse_small_triangles.h>
|
||||
#include <igl/signed_distance.h>
|
||||
|
||||
#ifdef SLIC3R_HOLE_RAYCASTER
|
||||
#include <libslic3r/SLA/Hollowing.hpp>
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
#include <tbb/parallel_for.h>
|
||||
|
||||
#include "ClipperUtils.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
namespace sla {
|
||||
|
||||
// Bring back PI from the igl namespace
|
||||
using igl::PI;
|
||||
|
||||
/* **************************************************************************
|
||||
* PointIndex implementation
|
||||
|
@ -188,100 +180,72 @@ void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
|
|||
* EigenMesh3D implementation
|
||||
* ****************************************************************************/
|
||||
|
||||
class EigenMesh3D::AABBImpl: public igl::AABB<Eigen::MatrixXd, 3> {
|
||||
|
||||
class EigenMesh3D::AABBImpl {
|
||||
private:
|
||||
AABBTreeIndirect::Tree3f m_tree;
|
||||
|
||||
public:
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
igl::WindingNumberAABB<Vec3d, Eigen::MatrixXd, Eigen::MatrixXi> windtree;
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
void init(const TriangleMesh& tm)
|
||||
{
|
||||
m_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
|
||||
tm.its.vertices, tm.its.indices);
|
||||
}
|
||||
|
||||
void intersect_ray(const TriangleMesh& tm,
|
||||
const Vec3d& s, const Vec3d& dir, igl::Hit& hit)
|
||||
{
|
||||
AABBTreeIndirect::intersect_ray_first_hit(tm.its.vertices,
|
||||
tm.its.indices,
|
||||
m_tree,
|
||||
s, dir, hit);
|
||||
}
|
||||
|
||||
void intersect_ray(const TriangleMesh& tm,
|
||||
const Vec3d& s, const Vec3d& dir, std::vector<igl::Hit>& hits)
|
||||
{
|
||||
AABBTreeIndirect::intersect_ray_all_hits(tm.its.vertices,
|
||||
tm.its.indices,
|
||||
m_tree,
|
||||
s, dir, hits);
|
||||
}
|
||||
|
||||
double squared_distance(const TriangleMesh& tm,
|
||||
const Vec3d& point, int& i, Eigen::Matrix<double, 1, 3>& closest) {
|
||||
size_t idx_unsigned = 0;
|
||||
Vec3d closest_vec3d(closest);
|
||||
double dist = AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
|
||||
tm.its.vertices,
|
||||
tm.its.indices,
|
||||
m_tree, point, idx_unsigned, closest_vec3d);
|
||||
i = int(idx_unsigned);
|
||||
closest = closest_vec3d;
|
||||
return dist;
|
||||
}
|
||||
};
|
||||
|
||||
static const constexpr double MESH_EPS = 1e-6;
|
||||
|
||||
void to_eigen_mesh(const TriangleMesh &tmesh, Eigen::MatrixXd &V, Eigen::MatrixXi &F)
|
||||
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh)
|
||||
: m_aabb(new AABBImpl()), m_tm(&tmesh)
|
||||
{
|
||||
const stl_file& stl = tmesh.stl;
|
||||
|
||||
V.resize(3*stl.stats.number_of_facets, 3);
|
||||
F.resize(stl.stats.number_of_facets, 3);
|
||||
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
|
||||
const stl_facet &facet = stl.facet_start[i];
|
||||
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
|
||||
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
|
||||
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
|
||||
F(i, 0) = int(3*i+0);
|
||||
F(i, 1) = int(3*i+1);
|
||||
F(i, 2) = int(3*i+2);
|
||||
}
|
||||
|
||||
if (!tmesh.has_shared_vertices())
|
||||
{
|
||||
Eigen::MatrixXd rV;
|
||||
Eigen::MatrixXi rF;
|
||||
// We will convert this to a proper 3d mesh with no duplicate points.
|
||||
Eigen::VectorXi SVI, SVJ;
|
||||
igl::remove_duplicate_vertices(V, F, MESH_EPS, rV, SVI, SVJ, rF);
|
||||
V = std::move(rV);
|
||||
F = std::move(rF);
|
||||
}
|
||||
}
|
||||
|
||||
void to_triangle_mesh(const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, TriangleMesh &out)
|
||||
{
|
||||
Pointf3s points(size_t(V.rows()));
|
||||
std::vector<Vec3i> facets(size_t(F.rows()));
|
||||
|
||||
for (Eigen::Index i = 0; i < V.rows(); ++i)
|
||||
points[size_t(i)] = V.row(i);
|
||||
|
||||
for (Eigen::Index i = 0; i < F.rows(); ++i)
|
||||
facets[size_t(i)] = F.row(i);
|
||||
|
||||
out = {points, facets};
|
||||
}
|
||||
|
||||
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
|
||||
auto&& bb = tmesh.bounding_box();
|
||||
m_ground_level += bb.min(Z);
|
||||
|
||||
to_eigen_mesh(tmesh, m_V, m_F);
|
||||
|
||||
// Build the AABB accelaration tree
|
||||
m_aabb->init(m_V, m_F);
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
m_aabb->windtree.set_mesh(m_V, m_F);
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
m_aabb->init(tmesh);
|
||||
}
|
||||
|
||||
EigenMesh3D::~EigenMesh3D() {}
|
||||
|
||||
EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
|
||||
m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level),
|
||||
m_tm(other.m_tm), m_ground_level(other.m_ground_level),
|
||||
m_aabb( new AABBImpl(*other.m_aabb) ) {}
|
||||
|
||||
EigenMesh3D::EigenMesh3D(const Contour3D &other)
|
||||
{
|
||||
m_V.resize(Eigen::Index(other.points.size()), 3);
|
||||
m_F.resize(Eigen::Index(other.faces3.size() + 2 * other.faces4.size()), 3);
|
||||
|
||||
for (Eigen::Index i = 0; i < Eigen::Index(other.points.size()); ++i)
|
||||
m_V.row(i) = other.points[size_t(i)];
|
||||
|
||||
for (Eigen::Index i = 0; i < Eigen::Index(other.faces3.size()); ++i)
|
||||
m_F.row(i) = other.faces3[size_t(i)];
|
||||
|
||||
size_t N = other.faces3.size() + 2 * other.faces4.size();
|
||||
for (size_t i = other.faces3.size(); i < N; i += 2) {
|
||||
size_t quad_idx = (i - other.faces3.size()) / 2;
|
||||
auto & quad = other.faces4[quad_idx];
|
||||
m_F.row(Eigen::Index(i)) = Vec3i{quad(0), quad(1), quad(2)};
|
||||
m_F.row(Eigen::Index(i + 1)) = Vec3i{quad(2), quad(3), quad(0)};
|
||||
}
|
||||
}
|
||||
|
||||
EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
|
||||
{
|
||||
m_V = other.m_V;
|
||||
m_F = other.m_F;
|
||||
m_tm = other.m_tm;
|
||||
m_ground_level = other.m_ground_level;
|
||||
m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
|
||||
}
|
||||
|
@ -290,6 +254,42 @@ EigenMesh3D &EigenMesh3D::operator=(EigenMesh3D &&other) = default;
|
|||
|
||||
EigenMesh3D::EigenMesh3D(EigenMesh3D &&other) = default;
|
||||
|
||||
|
||||
|
||||
const std::vector<Vec3f>& EigenMesh3D::vertices() const
|
||||
{
|
||||
return m_tm->its.vertices;
|
||||
}
|
||||
|
||||
|
||||
|
||||
const std::vector<Vec3i>& EigenMesh3D::indices() const
|
||||
{
|
||||
return m_tm->its.indices;
|
||||
}
|
||||
|
||||
|
||||
|
||||
const Vec3f& EigenMesh3D::vertices(size_t idx) const
|
||||
{
|
||||
return m_tm->its.vertices[idx];
|
||||
}
|
||||
|
||||
|
||||
|
||||
const Vec3i& EigenMesh3D::indices(size_t idx) const
|
||||
{
|
||||
return m_tm->its.indices[idx];
|
||||
}
|
||||
|
||||
|
||||
|
||||
Vec3d EigenMesh3D::normal_by_face_id(int face_id) const {
|
||||
return m_tm->stl.facet_start[face_id].normal.cast<double>();
|
||||
}
|
||||
|
||||
|
||||
|
||||
EigenMesh3D::hit_result
|
||||
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
|
||||
{
|
||||
|
@ -297,24 +297,26 @@ EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
|
|||
igl::Hit hit;
|
||||
hit.t = std::numeric_limits<float>::infinity();
|
||||
|
||||
if (m_holes.empty()) {
|
||||
m_aabb->intersect_ray(m_V, m_F, s, dir, hit);
|
||||
hit_result ret(*this);
|
||||
ret.m_t = double(hit.t);
|
||||
ret.m_dir = dir;
|
||||
ret.m_source = s;
|
||||
if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
|
||||
ret.m_normal = this->normal_by_face_id(hit.id);
|
||||
ret.m_face_id = hit.id;
|
||||
}
|
||||
#ifdef SLIC3R_HOLE_RAYCASTER
|
||||
if (! m_holes.empty()) {
|
||||
|
||||
return ret;
|
||||
}
|
||||
else {
|
||||
// If there are holes, the hit_results will be made by
|
||||
// query_ray_hits (object) and filter_hits (holes):
|
||||
return filter_hits(query_ray_hits(s, dir));
|
||||
}
|
||||
#endif
|
||||
|
||||
m_aabb->intersect_ray(*m_tm, s, dir, hit);
|
||||
hit_result ret(*this);
|
||||
ret.m_t = double(hit.t);
|
||||
ret.m_dir = dir;
|
||||
ret.m_source = s;
|
||||
if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
|
||||
ret.m_normal = this->normal_by_face_id(hit.id);
|
||||
ret.m_face_id = hit.id;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::vector<EigenMesh3D::hit_result>
|
||||
|
@ -322,7 +324,7 @@ EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
|
|||
{
|
||||
std::vector<EigenMesh3D::hit_result> outs;
|
||||
std::vector<igl::Hit> hits;
|
||||
m_aabb->intersect_ray(m_V, m_F, s, dir, hits);
|
||||
m_aabb->intersect_ray(*m_tm, s, dir, hits);
|
||||
|
||||
// The sort is necessary, the hits are not always sorted.
|
||||
std::sort(hits.begin(), hits.end(),
|
||||
|
@ -351,6 +353,8 @@ EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
|
|||
return outs;
|
||||
}
|
||||
|
||||
|
||||
#ifdef SLIC3R_HOLE_RAYCASTER
|
||||
EigenMesh3D::hit_result EigenMesh3D::filter_hits(
|
||||
const std::vector<EigenMesh3D::hit_result>& object_hits) const
|
||||
{
|
||||
|
@ -445,26 +449,14 @@ EigenMesh3D::hit_result EigenMesh3D::filter_hits(
|
|||
// if we got here, the ray ended up in infinity
|
||||
return out;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
|
||||
double sign = 0; double sqdst = 0; int i = 0; Vec3d c;
|
||||
igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree,
|
||||
p, sign, sqdst, i, c);
|
||||
|
||||
return si_result(sign * std::sqrt(sqdst), i, c);
|
||||
}
|
||||
|
||||
bool EigenMesh3D::inside(const Vec3d &p) const {
|
||||
return m_aabb->windtree.inside(p);
|
||||
}
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
|
||||
double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
|
||||
double sqdst = 0;
|
||||
Eigen::Matrix<double, 1, 3> pp = p;
|
||||
Eigen::Matrix<double, 1, 3> cc;
|
||||
sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc);
|
||||
sqdst = m_aabb->squared_distance(*m_tm, pp, i, cc);
|
||||
c = cc;
|
||||
return sqdst;
|
||||
}
|
||||
|
@ -498,7 +490,7 @@ PointSet normals(const PointSet& points,
|
|||
std::function<void()> thr, // throw on cancel
|
||||
const std::vector<unsigned>& pt_indices)
|
||||
{
|
||||
if (points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0)
|
||||
if (points.rows() == 0 || mesh.vertices().empty() || mesh.indices().empty())
|
||||
return {};
|
||||
|
||||
std::vector<unsigned> range = pt_indices;
|
||||
|
@ -520,11 +512,11 @@ PointSet normals(const PointSet& points,
|
|||
|
||||
mesh.squared_distance(points.row(eidx), faceid, p);
|
||||
|
||||
auto trindex = mesh.F().row(faceid);
|
||||
auto trindex = mesh.indices(faceid);
|
||||
|
||||
const Vec3d &p1 = mesh.V().row(trindex(0));
|
||||
const Vec3d &p2 = mesh.V().row(trindex(1));
|
||||
const Vec3d &p3 = mesh.V().row(trindex(2));
|
||||
const Vec3d &p1 = mesh.vertices(trindex(0)).cast<double>();
|
||||
const Vec3d &p2 = mesh.vertices(trindex(1)).cast<double>();
|
||||
const Vec3d &p3 = mesh.vertices(trindex(2)).cast<double>();
|
||||
|
||||
// We should check if the point lies on an edge of the hosting
|
||||
// triangle. If it does then all the other triangles using the
|
||||
|
@ -557,36 +549,30 @@ PointSet normals(const PointSet& points,
|
|||
}
|
||||
|
||||
// vector for the neigboring triangles including the detected one.
|
||||
std::vector<Vec3i> neigh;
|
||||
std::vector<size_t> neigh;
|
||||
if (ic >= 0) { // The point is right on a vertex of the triangle
|
||||
for (int n = 0; n < mesh.F().rows(); ++n) {
|
||||
for (size_t n = 0; n < mesh.indices().size(); ++n) {
|
||||
thr();
|
||||
Vec3i ni = mesh.F().row(n);
|
||||
Vec3i ni = mesh.indices(n);
|
||||
if ((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
|
||||
neigh.emplace_back(ni);
|
||||
neigh.emplace_back(n);
|
||||
}
|
||||
} else if (ia >= 0 && ib >= 0) { // the point is on and edge
|
||||
// now get all the neigboring triangles
|
||||
for (int n = 0; n < mesh.F().rows(); ++n) {
|
||||
for (size_t n = 0; n < mesh.indices().size(); ++n) {
|
||||
thr();
|
||||
Vec3i ni = mesh.F().row(n);
|
||||
Vec3i ni = mesh.indices(n);
|
||||
if ((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
|
||||
(ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
|
||||
neigh.emplace_back(ni);
|
||||
neigh.emplace_back(n);
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the normals for the neighboring triangles
|
||||
std::vector<Vec3d> neighnorms;
|
||||
neighnorms.reserve(neigh.size());
|
||||
for (const Vec3i &tri : neigh) {
|
||||
const Vec3d & pt1 = mesh.V().row(tri(0));
|
||||
const Vec3d & pt2 = mesh.V().row(tri(1));
|
||||
const Vec3d & pt3 = mesh.V().row(tri(2));
|
||||
Eigen::Vector3d U = pt2 - pt1;
|
||||
Eigen::Vector3d V = pt3 - pt1;
|
||||
neighnorms.emplace_back(U.cross(V).normalized());
|
||||
}
|
||||
for (size_t &tri_id : neigh)
|
||||
neighnorms.emplace_back(mesh.normal_by_face_id(tri_id));
|
||||
|
||||
// Throw out duplicates. They would cause trouble with summing. We
|
||||
// will use std::unique which works on sorted ranges. We will sort
|
||||
|
|
|
@ -7,18 +7,13 @@
|
|||
#include <functional>
|
||||
#include <Eigen/Geometry>
|
||||
|
||||
//#include "SLASpatIndex.hpp"
|
||||
|
||||
//#include <libslic3r/ExPolygon.hpp>
|
||||
//#include <libslic3r/TriangleMesh.hpp>
|
||||
|
||||
// #define SLIC3R_SLA_NEEDS_WINDTREE
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// Typedefs from Point.hpp
|
||||
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
|
||||
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
|
||||
typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> Vec3i;
|
||||
typedef Eigen::Matrix<int, 4, 1, Eigen::DontAlign> Vec4i;
|
||||
|
||||
namespace sla {
|
||||
|
|
|
@ -28,14 +28,14 @@ Contour3D::Contour3D(TriangleMesh &&trmesh)
|
|||
}
|
||||
|
||||
Contour3D::Contour3D(const EigenMesh3D &emesh) {
|
||||
points.reserve(size_t(emesh.V().rows()));
|
||||
faces3.reserve(size_t(emesh.F().rows()));
|
||||
points.reserve(emesh.vertices().size());
|
||||
faces3.reserve(emesh.indices().size());
|
||||
|
||||
for (int r = 0; r < emesh.V().rows(); r++)
|
||||
points.emplace_back(emesh.V().row(r).cast<double>());
|
||||
for (const Vec3f& vert : emesh.vertices())
|
||||
points.emplace_back(vert.cast<double>());
|
||||
|
||||
for (int i = 0; i < emesh.F().rows(); i++)
|
||||
faces3.emplace_back(emesh.F().row(i));
|
||||
for (const auto& ind : emesh.indices())
|
||||
faces3.emplace_back(ind);
|
||||
}
|
||||
|
||||
Contour3D &Contour3D::merge(const Contour3D &ctr)
|
||||
|
|
|
@ -2,7 +2,16 @@
|
|||
#define SLA_EIGENMESH3D_H
|
||||
|
||||
#include <libslic3r/SLA/Common.hpp>
|
||||
#include "libslic3r/SLA/Hollowing.hpp"
|
||||
|
||||
|
||||
// There is an implementation of a hole-aware raycaster that was eventually
|
||||
// not used in production version. It is now hidden under following define
|
||||
// for possible future use.
|
||||
//#define SLIC3R_HOLE_RAYCASTER
|
||||
|
||||
#ifdef SLIC3R_HOLE_RAYCASTER
|
||||
#include "libslic3r/SLA/Hollowing.hpp"
|
||||
#endif
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
|
@ -10,31 +19,26 @@ class TriangleMesh;
|
|||
|
||||
namespace sla {
|
||||
|
||||
struct Contour3D;
|
||||
|
||||
void to_eigen_mesh(const TriangleMesh &mesh, Eigen::MatrixXd &V, Eigen::MatrixXi &F);
|
||||
void to_triangle_mesh(const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, TriangleMesh &);
|
||||
|
||||
/// An index-triangle structure for libIGL functions. Also serves as an
|
||||
/// alternative (raw) input format for the SLASupportTree.
|
||||
// Implemented in libslic3r/SLA/Common.cpp
|
||||
class EigenMesh3D {
|
||||
class AABBImpl;
|
||||
|
||||
Eigen::MatrixXd m_V;
|
||||
Eigen::MatrixXi m_F;
|
||||
const TriangleMesh* m_tm;
|
||||
double m_ground_level = 0, m_gnd_offset = 0;
|
||||
|
||||
std::unique_ptr<AABBImpl> m_aabb;
|
||||
|
||||
#ifdef SLIC3R_HOLE_RAYCASTER
|
||||
// This holds a copy of holes in the mesh. Initialized externally
|
||||
// by load_mesh setter.
|
||||
std::vector<DrainHole> m_holes;
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
explicit EigenMesh3D(const TriangleMesh&);
|
||||
explicit EigenMesh3D(const Contour3D &other);
|
||||
|
||||
EigenMesh3D(const EigenMesh3D& other);
|
||||
EigenMesh3D& operator=(const EigenMesh3D&);
|
||||
|
@ -48,8 +52,10 @@ public:
|
|||
inline void ground_level_offset(double o) { m_gnd_offset = o; }
|
||||
inline double ground_level_offset() const { return m_gnd_offset; }
|
||||
|
||||
inline const Eigen::MatrixXd& V() const { return m_V; }
|
||||
inline const Eigen::MatrixXi& F() const { return m_F; }
|
||||
const std::vector<Vec3f>& vertices() const;
|
||||
const std::vector<Vec3i>& indices() const;
|
||||
const Vec3f& vertices(size_t idx) const;
|
||||
const Vec3i& indices(size_t idx) const;
|
||||
|
||||
// Result of a raycast
|
||||
class hit_result {
|
||||
|
@ -88,51 +94,28 @@ public:
|
|||
return is_hit() && normal().dot(m_dir) > 0;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
#ifdef SLIC3R_HOLE_RAYCASTER
|
||||
// Inform the object about location of holes
|
||||
// creates internal copy of the vector
|
||||
void load_holes(const std::vector<DrainHole>& holes) {
|
||||
m_holes = holes;
|
||||
}
|
||||
|
||||
// Casting a ray on the mesh, returns the distance where the hit occures.
|
||||
hit_result query_ray_hit(const Vec3d &s, const Vec3d &dir) const;
|
||||
|
||||
// Casts a ray on the mesh and returns all hits
|
||||
std::vector<hit_result> query_ray_hits(const Vec3d &s, const Vec3d &dir) const;
|
||||
|
||||
// Iterates over hits and holes and returns the true hit, possibly
|
||||
// on the inside of a hole.
|
||||
// This function is currently not used anywhere, it was written when the
|
||||
// holes were subtracted on slices, that is, before we started using CGAL
|
||||
// to actually cut the holes into the mesh.
|
||||
hit_result filter_hits(const std::vector<EigenMesh3D::hit_result>& obj_hits) const;
|
||||
#endif
|
||||
|
||||
class si_result {
|
||||
double m_value;
|
||||
int m_fidx;
|
||||
Vec3d m_p;
|
||||
si_result(double val, int i, const Vec3d& c):
|
||||
m_value(val), m_fidx(i), m_p(c) {}
|
||||
friend class EigenMesh3D;
|
||||
public:
|
||||
|
||||
si_result() = delete;
|
||||
|
||||
double value() const { return m_value; }
|
||||
operator double() const { return m_value; }
|
||||
const Vec3d& point_on_mesh() const { return m_p; }
|
||||
int F_idx() const { return m_fidx; }
|
||||
};
|
||||
// Casting a ray on the mesh, returns the distance where the hit occures.
|
||||
hit_result query_ray_hit(const Vec3d &s, const Vec3d &dir) const;
|
||||
|
||||
// Casts a ray on the mesh and returns all hits
|
||||
std::vector<hit_result> query_ray_hits(const Vec3d &s, const Vec3d &dir) const;
|
||||
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
// The signed distance from a point to the mesh. Outputs the distance,
|
||||
// the index of the triangle and the closest point in mesh coordinate space.
|
||||
si_result signed_distance(const Vec3d& p) const;
|
||||
|
||||
bool inside(const Vec3d& p) const;
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
|
||||
double squared_distance(const Vec3d& p, int& i, Vec3d& c) const;
|
||||
inline double squared_distance(const Vec3d &p) const
|
||||
{
|
||||
|
@ -141,15 +124,7 @@ public:
|
|||
return squared_distance(p, i, c);
|
||||
}
|
||||
|
||||
Vec3d normal_by_face_id(int face_id) const {
|
||||
auto trindex = F().row(face_id);
|
||||
const Vec3d& p1 = V().row(trindex(0));
|
||||
const Vec3d& p2 = V().row(trindex(1));
|
||||
const Vec3d& p3 = V().row(trindex(2));
|
||||
Eigen::Vector3d U = p2 - p1;
|
||||
Eigen::Vector3d V = p3 - p1;
|
||||
return U.cross(V).normalized();
|
||||
}
|
||||
Vec3d normal_by_face_id(int face_id) const;
|
||||
};
|
||||
|
||||
// Calculate the normals for the selected points (from 'points' set) on the
|
||||
|
|
|
@ -28,7 +28,7 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
|||
|
||||
// We will use only one instance of this converted mesh to examine different
|
||||
// rotations
|
||||
EigenMesh3D emesh(modelobj.raw_mesh());
|
||||
const TriangleMesh& mesh = modelobj.raw_mesh();
|
||||
|
||||
// For current iteration number
|
||||
unsigned status = 0;
|
||||
|
@ -44,10 +44,10 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
|||
// call the status callback in each iteration but the actual value may be
|
||||
// the same for subsequent iterations (status goes from 0 to 100 but
|
||||
// iterations can be many more)
|
||||
auto objfunc = [&emesh, &status, &statuscb, &stopcond, max_tries]
|
||||
auto objfunc = [&mesh, &status, &statuscb, &stopcond, max_tries]
|
||||
(double rx, double ry, double rz)
|
||||
{
|
||||
EigenMesh3D& m = emesh;
|
||||
const TriangleMesh& m = mesh;
|
||||
|
||||
// prepare the rotation transformation
|
||||
Transform3d rt = Transform3d::Identity();
|
||||
|
@ -68,18 +68,8 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
|
|||
// area. The current function is only an example of how to optimize.
|
||||
|
||||
// Later we can add more criteria like the number of overhangs, etc...
|
||||
for(int i = 0; i < m.F().rows(); i++) {
|
||||
auto idx = m.F().row(i);
|
||||
|
||||
Vec3d p1 = m.V().row(idx(0));
|
||||
Vec3d p2 = m.V().row(idx(1));
|
||||
Vec3d p3 = m.V().row(idx(2));
|
||||
|
||||
Eigen::Vector3d U = p2 - p1;
|
||||
Eigen::Vector3d V = p3 - p1;
|
||||
|
||||
// So this is the normal
|
||||
auto n = U.cross(V).normalized();
|
||||
for(size_t i = 0; i < m.stl.facet_start.size(); i++) {
|
||||
Vec3d n = m.stl.facet_start[i].normal.cast<double>();
|
||||
|
||||
// rotate the normal with the current rotation given by the solver
|
||||
n = rt * n;
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
#include <libslic3r/SLA/SupportPoint.hpp>
|
||||
#include <libslic3r/SLA/EigenMesh3D.hpp>
|
||||
|
||||
#include <libslic3r/BoundingBox.hpp>
|
||||
#include <libslic3r/ClipperUtils.hpp>
|
||||
#include <libslic3r/Point.hpp>
|
||||
|
||||
|
|
|
@ -1,621 +0,0 @@
|
|||
#include <cmath>
|
||||
#include "SLA/SLASupportTree.hpp"
|
||||
#include "SLA/SLACommon.hpp"
|
||||
#include "SLA/SLASpatIndex.hpp"
|
||||
|
||||
// Workaround: IGL signed_distance.h will define PI in the igl namespace.
|
||||
#undef PI
|
||||
|
||||
// HEAVY headers... takes eternity to compile
|
||||
|
||||
// for concave hull merging decisions
|
||||
#include "SLABoostAdapter.hpp"
|
||||
#include "boost/geometry/index/rtree.hpp"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(push)
|
||||
#pragma warning(disable: 4244)
|
||||
#pragma warning(disable: 4267)
|
||||
#endif
|
||||
#include <igl/ray_mesh_intersect.h>
|
||||
#include <igl/point_mesh_squared_distance.h>
|
||||
#include <igl/remove_duplicate_vertices.h>
|
||||
#include <igl/signed_distance.h>
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(pop)
|
||||
#endif
|
||||
|
||||
#include <tbb/parallel_for.h>
|
||||
|
||||
#include "SLASpatIndex.hpp"
|
||||
#include "ClipperUtils.hpp"
|
||||
|
||||
namespace Slic3r {
|
||||
namespace sla {
|
||||
|
||||
// Bring back PI from the igl namespace
|
||||
using igl::PI;
|
||||
|
||||
/* **************************************************************************
|
||||
* PointIndex implementation
|
||||
* ************************************************************************** */
|
||||
|
||||
class PointIndex::Impl {
|
||||
public:
|
||||
using BoostIndex = boost::geometry::index::rtree< PointIndexEl,
|
||||
boost::geometry::index::rstar<16, 4> /* ? */ >;
|
||||
|
||||
BoostIndex m_store;
|
||||
};
|
||||
|
||||
PointIndex::PointIndex(): m_impl(new Impl()) {}
|
||||
PointIndex::~PointIndex() {}
|
||||
|
||||
PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
|
||||
PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
|
||||
|
||||
PointIndex& PointIndex::operator=(const PointIndex &cpy)
|
||||
{
|
||||
m_impl.reset(new Impl(*cpy.m_impl));
|
||||
return *this;
|
||||
}
|
||||
|
||||
PointIndex& PointIndex::operator=(PointIndex &&cpy)
|
||||
{
|
||||
m_impl.swap(cpy.m_impl);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void PointIndex::insert(const PointIndexEl &el)
|
||||
{
|
||||
m_impl->m_store.insert(el);
|
||||
}
|
||||
|
||||
bool PointIndex::remove(const PointIndexEl& el)
|
||||
{
|
||||
return m_impl->m_store.remove(el) == 1;
|
||||
}
|
||||
|
||||
std::vector<PointIndexEl>
|
||||
PointIndex::query(std::function<bool(const PointIndexEl &)> fn) const
|
||||
{
|
||||
namespace bgi = boost::geometry::index;
|
||||
|
||||
std::vector<PointIndexEl> ret;
|
||||
m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::vector<PointIndexEl> PointIndex::nearest(const Vec3d &el, unsigned k = 1) const
|
||||
{
|
||||
namespace bgi = boost::geometry::index;
|
||||
std::vector<PointIndexEl> ret; ret.reserve(k);
|
||||
m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
size_t PointIndex::size() const
|
||||
{
|
||||
return m_impl->m_store.size();
|
||||
}
|
||||
|
||||
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn)
|
||||
{
|
||||
for(auto& el : m_impl->m_store) fn(el);
|
||||
}
|
||||
|
||||
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn) const
|
||||
{
|
||||
for(const auto &el : m_impl->m_store) fn(el);
|
||||
}
|
||||
|
||||
/* **************************************************************************
|
||||
* BoxIndex implementation
|
||||
* ************************************************************************** */
|
||||
|
||||
class BoxIndex::Impl {
|
||||
public:
|
||||
using BoostIndex = boost::geometry::index::
|
||||
rtree<BoxIndexEl, boost::geometry::index::rstar<16, 4> /* ? */>;
|
||||
|
||||
BoostIndex m_store;
|
||||
};
|
||||
|
||||
BoxIndex::BoxIndex(): m_impl(new Impl()) {}
|
||||
BoxIndex::~BoxIndex() {}
|
||||
|
||||
BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
|
||||
BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
|
||||
|
||||
BoxIndex& BoxIndex::operator=(const BoxIndex &cpy)
|
||||
{
|
||||
m_impl.reset(new Impl(*cpy.m_impl));
|
||||
return *this;
|
||||
}
|
||||
|
||||
BoxIndex& BoxIndex::operator=(BoxIndex &&cpy)
|
||||
{
|
||||
m_impl.swap(cpy.m_impl);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void BoxIndex::insert(const BoxIndexEl &el)
|
||||
{
|
||||
m_impl->m_store.insert(el);
|
||||
}
|
||||
|
||||
bool BoxIndex::remove(const BoxIndexEl& el)
|
||||
{
|
||||
return m_impl->m_store.remove(el) == 1;
|
||||
}
|
||||
|
||||
std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
|
||||
BoxIndex::QueryType qt)
|
||||
{
|
||||
namespace bgi = boost::geometry::index;
|
||||
|
||||
std::vector<BoxIndexEl> ret; ret.reserve(m_impl->m_store.size());
|
||||
|
||||
switch (qt) {
|
||||
case qtIntersects:
|
||||
m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret));
|
||||
break;
|
||||
case qtWithin:
|
||||
m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret));
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
size_t BoxIndex::size() const
|
||||
{
|
||||
return m_impl->m_store.size();
|
||||
}
|
||||
|
||||
void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
|
||||
{
|
||||
for(auto& el : m_impl->m_store) fn(el);
|
||||
}
|
||||
|
||||
/* ****************************************************************************
|
||||
* EigenMesh3D implementation
|
||||
* ****************************************************************************/
|
||||
|
||||
class EigenMesh3D::AABBImpl: public igl::AABB<Eigen::MatrixXd, 3> {
|
||||
public:
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
igl::WindingNumberAABB<Vec3d, Eigen::MatrixXd, Eigen::MatrixXi> windtree;
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
};
|
||||
|
||||
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
|
||||
static const double dEPS = 1e-6;
|
||||
|
||||
const stl_file& stl = tmesh.stl;
|
||||
|
||||
auto&& bb = tmesh.bounding_box();
|
||||
m_ground_level += bb.min(Z);
|
||||
|
||||
Eigen::MatrixXd V;
|
||||
Eigen::MatrixXi F;
|
||||
|
||||
V.resize(3*stl.stats.number_of_facets, 3);
|
||||
F.resize(stl.stats.number_of_facets, 3);
|
||||
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
|
||||
const stl_facet &facet = stl.facet_start[i];
|
||||
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
|
||||
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
|
||||
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
|
||||
F(i, 0) = int(3*i+0);
|
||||
F(i, 1) = int(3*i+1);
|
||||
F(i, 2) = int(3*i+2);
|
||||
}
|
||||
|
||||
// We will convert this to a proper 3d mesh with no duplicate points.
|
||||
Eigen::VectorXi SVI, SVJ;
|
||||
igl::remove_duplicate_vertices(V, F, dEPS, m_V, SVI, SVJ, m_F);
|
||||
|
||||
// Build the AABB accelaration tree
|
||||
m_aabb->init(m_V, m_F);
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
m_aabb->windtree.set_mesh(m_V, m_F);
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
}
|
||||
|
||||
EigenMesh3D::~EigenMesh3D() {}
|
||||
|
||||
EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
|
||||
m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level),
|
||||
m_aabb( new AABBImpl(*other.m_aabb) ) {}
|
||||
|
||||
EigenMesh3D::EigenMesh3D(const Contour3D &other)
|
||||
{
|
||||
m_V.resize(Eigen::Index(other.points.size()), 3);
|
||||
m_F.resize(Eigen::Index(other.faces3.size() + 2 * other.faces4.size()), 3);
|
||||
|
||||
for (Eigen::Index i = 0; i < Eigen::Index(other.points.size()); ++i)
|
||||
m_V.row(i) = other.points[size_t(i)];
|
||||
|
||||
for (Eigen::Index i = 0; i < Eigen::Index(other.faces3.size()); ++i)
|
||||
m_F.row(i) = other.faces3[size_t(i)];
|
||||
|
||||
size_t N = other.faces3.size() + 2 * other.faces4.size();
|
||||
for (size_t i = other.faces3.size(); i < N; i += 2) {
|
||||
size_t quad_idx = (i - other.faces3.size()) / 2;
|
||||
auto & quad = other.faces4[quad_idx];
|
||||
m_F.row(Eigen::Index(i)) = Vec3i{quad(0), quad(1), quad(2)};
|
||||
m_F.row(Eigen::Index(i + 1)) = Vec3i{quad(2), quad(3), quad(0)};
|
||||
}
|
||||
}
|
||||
|
||||
EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
|
||||
{
|
||||
m_V = other.m_V;
|
||||
m_F = other.m_F;
|
||||
m_ground_level = other.m_ground_level;
|
||||
m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
|
||||
}
|
||||
|
||||
EigenMesh3D::hit_result
|
||||
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
|
||||
{
|
||||
igl::Hit hit;
|
||||
hit.t = std::numeric_limits<float>::infinity();
|
||||
m_aabb->intersect_ray(m_V, m_F, s, dir, hit);
|
||||
|
||||
hit_result ret(*this);
|
||||
ret.m_t = double(hit.t);
|
||||
ret.m_dir = dir;
|
||||
ret.m_source = s;
|
||||
if(!std::isinf(hit.t) && !std::isnan(hit.t)) ret.m_face_id = hit.id;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::vector<EigenMesh3D::hit_result>
|
||||
EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
|
||||
{
|
||||
std::vector<EigenMesh3D::hit_result> outs;
|
||||
std::vector<igl::Hit> hits;
|
||||
m_aabb->intersect_ray(m_V, m_F, s, dir, hits);
|
||||
|
||||
// The sort is necessary, the hits are not always sorted.
|
||||
std::sort(hits.begin(), hits.end(),
|
||||
[](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; });
|
||||
|
||||
// Convert the igl::Hit into hit_result
|
||||
outs.reserve(hits.size());
|
||||
for (const igl::Hit& hit : hits) {
|
||||
outs.emplace_back(EigenMesh3D::hit_result(*this));
|
||||
outs.back().m_t = double(hit.t);
|
||||
outs.back().m_dir = dir;
|
||||
outs.back().m_source = s;
|
||||
if(!std::isinf(hit.t) && !std::isnan(hit.t))
|
||||
outs.back().m_face_id = hit.id;
|
||||
}
|
||||
|
||||
return outs;
|
||||
}
|
||||
|
||||
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
|
||||
EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
|
||||
double sign = 0; double sqdst = 0; int i = 0; Vec3d c;
|
||||
igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree,
|
||||
p, sign, sqdst, i, c);
|
||||
|
||||
return si_result(sign * std::sqrt(sqdst), i, c);
|
||||
}
|
||||
|
||||
bool EigenMesh3D::inside(const Vec3d &p) const {
|
||||
return m_aabb->windtree.inside(p);
|
||||
}
|
||||
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
|
||||
|
||||
double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
|
||||
double sqdst = 0;
|
||||
Eigen::Matrix<double, 1, 3> pp = p;
|
||||
Eigen::Matrix<double, 1, 3> cc;
|
||||
sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc);
|
||||
c = cc;
|
||||
return sqdst;
|
||||
}
|
||||
|
||||
/* ****************************************************************************
|
||||
* Misc functions
|
||||
* ****************************************************************************/
|
||||
|
||||
namespace {
|
||||
|
||||
bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
|
||||
double eps = 0.05)
|
||||
{
|
||||
using Line3D = Eigen::ParametrizedLine<double, 3>;
|
||||
|
||||
auto line = Line3D::Through(e1, e2);
|
||||
double d = line.distance(p);
|
||||
return std::abs(d) < eps;
|
||||
}
|
||||
|
||||
template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
|
||||
auto p = pp2 - pp1;
|
||||
return std::sqrt(p.transpose() * p);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
PointSet normals(const PointSet& points,
|
||||
const EigenMesh3D& mesh,
|
||||
double eps,
|
||||
std::function<void()> thr, // throw on cancel
|
||||
const std::vector<unsigned>& pt_indices)
|
||||
{
|
||||
if(points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0)
|
||||
return {};
|
||||
|
||||
std::vector<unsigned> range = pt_indices;
|
||||
if(range.empty()) {
|
||||
range.resize(size_t(points.rows()), 0);
|
||||
std::iota(range.begin(), range.end(), 0);
|
||||
}
|
||||
|
||||
PointSet ret(range.size(), 3);
|
||||
|
||||
// for (size_t ridx = 0; ridx < range.size(); ++ridx)
|
||||
tbb::parallel_for(size_t(0), range.size(),
|
||||
[&ret, &range, &mesh, &points, thr, eps](size_t ridx)
|
||||
{
|
||||
thr();
|
||||
auto eidx = Eigen::Index(range[ridx]);
|
||||
int faceid = 0;
|
||||
Vec3d p;
|
||||
|
||||
mesh.squared_distance(points.row(eidx), faceid, p);
|
||||
|
||||
auto trindex = mesh.F().row(faceid);
|
||||
|
||||
const Vec3d& p1 = mesh.V().row(trindex(0));
|
||||
const Vec3d& p2 = mesh.V().row(trindex(1));
|
||||
const Vec3d& p3 = mesh.V().row(trindex(2));
|
||||
|
||||
// We should check if the point lies on an edge of the hosting triangle.
|
||||
// If it does then all the other triangles using the same two points
|
||||
// have to be searched and the final normal should be some kind of
|
||||
// aggregation of the participating triangle normals. We should also
|
||||
// consider the cases where the support point lies right on a vertex
|
||||
// of its triangle. The procedure is the same, get the neighbor
|
||||
// triangles and calculate an average normal.
|
||||
|
||||
// mark the vertex indices of the edge. ia and ib marks and edge ic
|
||||
// will mark a single vertex.
|
||||
int ia = -1, ib = -1, ic = -1;
|
||||
|
||||
if(std::abs(distance(p, p1)) < eps) {
|
||||
ic = trindex(0);
|
||||
}
|
||||
else if(std::abs(distance(p, p2)) < eps) {
|
||||
ic = trindex(1);
|
||||
}
|
||||
else if(std::abs(distance(p, p3)) < eps) {
|
||||
ic = trindex(2);
|
||||
}
|
||||
else if(point_on_edge(p, p1, p2, eps)) {
|
||||
ia = trindex(0); ib = trindex(1);
|
||||
}
|
||||
else if(point_on_edge(p, p2, p3, eps)) {
|
||||
ia = trindex(1); ib = trindex(2);
|
||||
}
|
||||
else if(point_on_edge(p, p1, p3, eps)) {
|
||||
ia = trindex(0); ib = trindex(2);
|
||||
}
|
||||
|
||||
// vector for the neigboring triangles including the detected one.
|
||||
std::vector<Vec3i> neigh;
|
||||
if(ic >= 0) { // The point is right on a vertex of the triangle
|
||||
for(int n = 0; n < mesh.F().rows(); ++n) {
|
||||
thr();
|
||||
Vec3i ni = mesh.F().row(n);
|
||||
if((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
|
||||
neigh.emplace_back(ni);
|
||||
}
|
||||
}
|
||||
else if(ia >= 0 && ib >= 0) { // the point is on and edge
|
||||
// now get all the neigboring triangles
|
||||
for(int n = 0; n < mesh.F().rows(); ++n) {
|
||||
thr();
|
||||
Vec3i ni = mesh.F().row(n);
|
||||
if((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
|
||||
(ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
|
||||
neigh.emplace_back(ni);
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate the normals for the neighboring triangles
|
||||
std::vector<Vec3d> neighnorms; neighnorms.reserve(neigh.size());
|
||||
for(const Vec3i& tri : neigh) {
|
||||
const Vec3d& pt1 = mesh.V().row(tri(0));
|
||||
const Vec3d& pt2 = mesh.V().row(tri(1));
|
||||
const Vec3d& pt3 = mesh.V().row(tri(2));
|
||||
Eigen::Vector3d U = pt2 - pt1;
|
||||
Eigen::Vector3d V = pt3 - pt1;
|
||||
neighnorms.emplace_back(U.cross(V).normalized());
|
||||
}
|
||||
|
||||
// Throw out duplicates. They would cause trouble with summing. We will
|
||||
// use std::unique which works on sorted ranges. We will sort by the
|
||||
// coefficient-wise sum of the normals. It should force the same
|
||||
// elements to be consecutive.
|
||||
std::sort(neighnorms.begin(), neighnorms.end(),
|
||||
[](const Vec3d& v1, const Vec3d& v2){
|
||||
return v1.sum() < v2.sum();
|
||||
});
|
||||
|
||||
auto lend = std::unique(neighnorms.begin(), neighnorms.end(),
|
||||
[](const Vec3d& n1, const Vec3d& n2) {
|
||||
// Compare normals for equivalence. This is controvers stuff.
|
||||
auto deq = [](double a, double b) { return std::abs(a-b) < 1e-3; };
|
||||
return deq(n1(X), n2(X)) && deq(n1(Y), n2(Y)) && deq(n1(Z), n2(Z));
|
||||
});
|
||||
|
||||
if(!neighnorms.empty()) { // there were neighbors to count with
|
||||
// sum up the normals and then normalize the result again.
|
||||
// This unification seems to be enough.
|
||||
Vec3d sumnorm(0, 0, 0);
|
||||
sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm);
|
||||
sumnorm.normalize();
|
||||
ret.row(long(ridx)) = sumnorm;
|
||||
}
|
||||
else { // point lies safely within its triangle
|
||||
Eigen::Vector3d U = p2 - p1;
|
||||
Eigen::Vector3d V = p3 - p1;
|
||||
ret.row(long(ridx)) = U.cross(V).normalized();
|
||||
}
|
||||
});
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
namespace bgi = boost::geometry::index;
|
||||
using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >;
|
||||
|
||||
namespace {
|
||||
|
||||
bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2)
|
||||
{
|
||||
return e1.second < e2.second;
|
||||
};
|
||||
|
||||
ClusteredPoints cluster(Index3D &sindex,
|
||||
unsigned max_points,
|
||||
std::function<std::vector<PointIndexEl>(
|
||||
const Index3D &, const PointIndexEl &)> qfn)
|
||||
{
|
||||
using Elems = std::vector<PointIndexEl>;
|
||||
|
||||
// Recursive function for visiting all the points in a given distance to
|
||||
// each other
|
||||
std::function<void(Elems&, Elems&)> group =
|
||||
[&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
|
||||
{
|
||||
for(auto& p : pts) {
|
||||
std::vector<PointIndexEl> tmp = qfn(sindex, p);
|
||||
|
||||
std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements);
|
||||
|
||||
Elems newpts;
|
||||
std::set_difference(tmp.begin(), tmp.end(),
|
||||
cluster.begin(), cluster.end(),
|
||||
std::back_inserter(newpts), cmp_ptidx_elements);
|
||||
|
||||
int c = max_points && newpts.size() + cluster.size() > max_points?
|
||||
int(max_points - cluster.size()) : int(newpts.size());
|
||||
|
||||
cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
|
||||
std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements);
|
||||
|
||||
if(!newpts.empty() && (!max_points || cluster.size() < max_points))
|
||||
group(newpts, cluster);
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<Elems> clusters;
|
||||
for(auto it = sindex.begin(); it != sindex.end();) {
|
||||
Elems cluster = {};
|
||||
Elems pts = {*it};
|
||||
group(pts, cluster);
|
||||
|
||||
for(auto& c : cluster) sindex.remove(c);
|
||||
it = sindex.begin();
|
||||
|
||||
clusters.emplace_back(cluster);
|
||||
}
|
||||
|
||||
ClusteredPoints result;
|
||||
for(auto& cluster : clusters) {
|
||||
result.emplace_back();
|
||||
for(auto c : cluster) result.back().emplace_back(c.second);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<PointIndexEl> distance_queryfn(const Index3D& sindex,
|
||||
const PointIndexEl& p,
|
||||
double dist,
|
||||
unsigned max_points)
|
||||
{
|
||||
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
|
||||
sindex.query(
|
||||
bgi::nearest(p.first, max_points),
|
||||
std::back_inserter(tmp)
|
||||
);
|
||||
|
||||
for(auto it = tmp.begin(); it < tmp.end(); ++it)
|
||||
if(distance(p.first, it->first) > dist) it = tmp.erase(it);
|
||||
|
||||
return tmp;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Clustering a set of points by the given criteria
|
||||
ClusteredPoints cluster(
|
||||
const std::vector<unsigned>& indices,
|
||||
std::function<Vec3d(unsigned)> pointfn,
|
||||
double dist,
|
||||
unsigned max_points)
|
||||
{
|
||||
// A spatial index for querying the nearest points
|
||||
Index3D sindex;
|
||||
|
||||
// Build the index
|
||||
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
|
||||
|
||||
return cluster(sindex, max_points,
|
||||
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
|
||||
{
|
||||
return distance_queryfn(sidx, p, dist, max_points);
|
||||
});
|
||||
}
|
||||
|
||||
// Clustering a set of points by the given criteria
|
||||
ClusteredPoints cluster(
|
||||
const std::vector<unsigned>& indices,
|
||||
std::function<Vec3d(unsigned)> pointfn,
|
||||
std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
|
||||
unsigned max_points)
|
||||
{
|
||||
// A spatial index for querying the nearest points
|
||||
Index3D sindex;
|
||||
|
||||
// Build the index
|
||||
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
|
||||
|
||||
return cluster(sindex, max_points,
|
||||
[max_points, predicate](const Index3D& sidx, const PointIndexEl& p)
|
||||
{
|
||||
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
|
||||
sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){
|
||||
return predicate(p, e);
|
||||
}), std::back_inserter(tmp));
|
||||
return tmp;
|
||||
});
|
||||
}
|
||||
|
||||
ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points)
|
||||
{
|
||||
// A spatial index for querying the nearest points
|
||||
Index3D sindex;
|
||||
|
||||
// Build the index
|
||||
for(Eigen::Index i = 0; i < pts.rows(); i++)
|
||||
sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
|
||||
|
||||
return cluster(sindex, max_points,
|
||||
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
|
||||
{
|
||||
return distance_queryfn(sidx, p, dist, max_points);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace sla
|
||||
} // namespace Slic3r
|
|
@ -104,8 +104,8 @@ private:
|
|||
// whether certain points are visible or obscured by the mesh etc.
|
||||
class MeshRaycaster {
|
||||
public:
|
||||
// The class makes a copy of the mesh as EigenMesh3D.
|
||||
// The pointer can be invalidated after constructor returns.
|
||||
// The class references extern TriangleMesh, which must stay alive
|
||||
// during MeshRaycaster existence.
|
||||
MeshRaycaster(const TriangleMesh& mesh)
|
||||
: m_emesh(mesh)
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue