3D Honeycomb - switch direction at smallest bridge point, rather than every layer (#4425)
Co-authored-by: SoftFever <softfeverever@gmail.com>
This commit is contained in:
parent
350a2e4c4a
commit
587fab285c
2 changed files with 197 additions and 98 deletions
|
@ -6,6 +6,11 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
// sign function
|
||||
template <typename T> int sgn(T val) {
|
||||
return (T(0) < val) - (val < T(0));
|
||||
}
|
||||
|
||||
/*
|
||||
Creates a contiguous sequence of points at a specified height that make
|
||||
up a horizontal slice of the edges of a space filling truncated
|
||||
|
@ -16,48 +21,98 @@ and Y axes.
|
|||
Credits: David Eccles (gringer).
|
||||
*/
|
||||
|
||||
// triangular wave function
|
||||
// this has period (gridSize * 2), and amplitude (gridSize / 2),
|
||||
// with triWave(pos = 0) = 0
|
||||
static coordf_t triWave(coordf_t pos, coordf_t gridSize)
|
||||
{
|
||||
float t = (pos / (gridSize * 2.)) + 0.25; // convert relative to grid size
|
||||
t = t - (int)t; // extract fractional part
|
||||
return((1. - abs(t * 8. - 4.)) * (gridSize / 4.) + (gridSize / 4.));
|
||||
}
|
||||
|
||||
// truncated octagonal waveform, with period and offset
|
||||
// as per the triangular wave function. The Z position adjusts
|
||||
// the maximum offset [between -(gridSize / 4) and (gridSize / 4)], with a
|
||||
// period of (gridSize * 2) and troctWave(Zpos = 0) = 0
|
||||
static coordf_t troctWave(coordf_t pos, coordf_t gridSize, coordf_t Zpos)
|
||||
{
|
||||
coordf_t Zcycle = triWave(Zpos, gridSize);
|
||||
coordf_t perpOffset = Zcycle / 2;
|
||||
coordf_t y = triWave(pos, gridSize);
|
||||
return((abs(y) > abs(perpOffset)) ?
|
||||
(sgn(y) * perpOffset) :
|
||||
(y * sgn(perpOffset)));
|
||||
}
|
||||
|
||||
// Identify the important points of curve change within a truncated
|
||||
// octahedron wave (as waveform fraction t):
|
||||
// 1. Start of wave (always 0.0)
|
||||
// 2. Transition to upper "horizontal" part
|
||||
// 3. Transition from upper "horizontal" part
|
||||
// 4. Transition to lower "horizontal" part
|
||||
// 5. Transition from lower "horizontal" part
|
||||
/* o---o
|
||||
* / \
|
||||
* o/ \
|
||||
* \ /
|
||||
* \ /
|
||||
* o---o
|
||||
*/
|
||||
static std::vector<coordf_t> getCriticalPoints(coordf_t Zpos, coordf_t gridSize)
|
||||
{
|
||||
std::vector<coordf_t> res = {0.};
|
||||
coordf_t perpOffset = abs(triWave(Zpos, gridSize) / 2.);
|
||||
|
||||
coordf_t normalisedOffset = perpOffset / gridSize;
|
||||
// // for debugging: just generate evenly-distributed points
|
||||
// for(coordf_t i = 0; i < 2; i += 0.05){
|
||||
// res.push_back(gridSize * i);
|
||||
// }
|
||||
// note: 0 == straight line
|
||||
if(normalisedOffset > 0){
|
||||
res.push_back(gridSize * (0. + normalisedOffset));
|
||||
res.push_back(gridSize * (1. - normalisedOffset));
|
||||
res.push_back(gridSize * (1. + normalisedOffset));
|
||||
res.push_back(gridSize * (2. - normalisedOffset));
|
||||
}
|
||||
return(res);
|
||||
}
|
||||
|
||||
// Generate an array of points that are in the same direction as the
|
||||
// basic printing line (i.e. Y points for columns, X points for rows)
|
||||
// Note: a negative offset only causes a change in the perpendicular
|
||||
// direction
|
||||
static std::vector<coordf_t> colinearPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
|
||||
static std::vector<coordf_t> colinearPoints(const coordf_t Zpos, coordf_t gridSize, std::vector<coordf_t> critPoints,
|
||||
const size_t baseLocation, size_t gridLength)
|
||||
{
|
||||
const coordf_t offset2 = std::abs(offset / coordf_t(2.));
|
||||
std::vector<coordf_t> points;
|
||||
points.push_back(baseLocation - offset2);
|
||||
for (size_t i = 0; i < gridLength; ++i) {
|
||||
points.push_back(baseLocation + i + offset2);
|
||||
points.push_back(baseLocation + i + 1 - offset2);
|
||||
std::vector<coordf_t> points;
|
||||
points.push_back(baseLocation);
|
||||
for (coordf_t cLoc = baseLocation; cLoc < gridLength; cLoc+= (gridSize*2)) {
|
||||
for(size_t pi = 0; pi < critPoints.size(); pi++){
|
||||
points.push_back(baseLocation + cLoc + critPoints[pi]);
|
||||
}
|
||||
points.push_back(baseLocation + gridLength + offset2);
|
||||
return points;
|
||||
}
|
||||
points.push_back(gridLength);
|
||||
return points;
|
||||
}
|
||||
|
||||
// Generate an array of points for the dimension that is perpendicular to
|
||||
// the basic printing line (i.e. X points for columns, Y points for rows)
|
||||
static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
|
||||
static std::vector<coordf_t> perpendPoints(const coordf_t Zpos, coordf_t gridSize, std::vector<coordf_t> critPoints,
|
||||
size_t baseLocation, size_t gridLength,
|
||||
size_t offsetBase, coordf_t perpDir)
|
||||
{
|
||||
coordf_t offset2 = offset / coordf_t(2.);
|
||||
coord_t side = 2 * (baseLocation & 1) - 1;
|
||||
std::vector<coordf_t> points;
|
||||
points.push_back(baseLocation - offset2 * side);
|
||||
for (size_t i = 0; i < gridLength; ++i) {
|
||||
side = 2*((i+baseLocation) & 1) - 1;
|
||||
points.push_back(baseLocation + offset2 * side);
|
||||
points.push_back(baseLocation + offset2 * side);
|
||||
}
|
||||
points.push_back(baseLocation - offset2 * side);
|
||||
return points;
|
||||
}
|
||||
|
||||
// Trims an array of points to specified rectangular limits. Point
|
||||
// components that are outside these limits are set to the limits.
|
||||
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
|
||||
{
|
||||
for (Vec2d &pt : pts) {
|
||||
pt.x() = std::clamp(pt.x(), minX, maxX);
|
||||
pt.y() = std::clamp(pt.y(), minY, maxY);
|
||||
std::vector<coordf_t> points;
|
||||
points.push_back(offsetBase);
|
||||
for (coordf_t cLoc = baseLocation; cLoc < gridLength; cLoc+= gridSize*2) {
|
||||
for(size_t pi = 0; pi < critPoints.size(); pi++){
|
||||
coordf_t offset = troctWave(critPoints[pi], gridSize, Zpos);
|
||||
points.push_back(offsetBase + (offset * perpDir));
|
||||
}
|
||||
}
|
||||
points.push_back(offsetBase);
|
||||
return points;
|
||||
}
|
||||
|
||||
static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coordf_t> &y)
|
||||
|
@ -71,68 +126,67 @@ static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coor
|
|||
}
|
||||
|
||||
// Generate a set of curves (array of array of 2d points) that describe a
|
||||
// horizontal slice of a truncated regular octahedron with edge length 1.
|
||||
// curveType specifies which lines to print, 1 for vertical lines
|
||||
// (columns), 2 for horizontal lines (rows), and 3 for both.
|
||||
static std::vector<Pointfs> makeNormalisedGrid(coordf_t z, size_t gridWidth, size_t gridHeight, size_t curveType)
|
||||
// horizontal slice of a truncated regular octahedron.
|
||||
static std::vector<Pointfs> makeActualGrid(coordf_t Zpos, coordf_t gridSize, size_t boundsX, size_t boundsY)
|
||||
{
|
||||
// offset required to create a regular octagram
|
||||
coordf_t octagramGap = coordf_t(0.5);
|
||||
|
||||
// sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
|
||||
coordf_t a = std::sqrt(coordf_t(2.)); // period
|
||||
coordf_t wave = fabs(fmod(z, a) - a/2.)/a*4. - 1.;
|
||||
coordf_t offset = wave * octagramGap;
|
||||
|
||||
std::vector<Pointfs> points;
|
||||
if ((curveType & 1) != 0) {
|
||||
for (size_t x = 0; x <= gridWidth; ++x) {
|
||||
points.push_back(Pointfs());
|
||||
Pointfs &newPoints = points.back();
|
||||
newPoints = zip(
|
||||
perpendPoints(offset, x, gridHeight),
|
||||
colinearPoints(offset, 0, gridHeight));
|
||||
// trim points to grid edges
|
||||
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
|
||||
if (x & 1)
|
||||
std::reverse(newPoints.begin(), newPoints.end());
|
||||
}
|
||||
std::vector<Pointfs> points;
|
||||
std::vector<coordf_t> critPoints = getCriticalPoints(Zpos, gridSize);
|
||||
coordf_t zCycle = fmod(Zpos + gridSize/2, gridSize * 2.) / (gridSize * 2.);
|
||||
bool printVert = zCycle < 0.5;
|
||||
if (printVert) {
|
||||
int perpDir = -1;
|
||||
for (coordf_t x = 0; x <= (boundsX); x+= gridSize, perpDir *= -1) {
|
||||
points.push_back(Pointfs());
|
||||
Pointfs &newPoints = points.back();
|
||||
newPoints = zip(
|
||||
perpendPoints(Zpos, gridSize, critPoints, 0, boundsY, x, perpDir),
|
||||
colinearPoints(Zpos, gridSize, critPoints, 0, boundsY));
|
||||
if (perpDir == 1)
|
||||
std::reverse(newPoints.begin(), newPoints.end());
|
||||
}
|
||||
if ((curveType & 2) != 0) {
|
||||
for (size_t y = 0; y <= gridHeight; ++y) {
|
||||
points.push_back(Pointfs());
|
||||
Pointfs &newPoints = points.back();
|
||||
newPoints = zip(
|
||||
colinearPoints(offset, 0, gridWidth),
|
||||
perpendPoints(offset, y, gridWidth));
|
||||
// trim points to grid edges
|
||||
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
|
||||
if (y & 1)
|
||||
std::reverse(newPoints.begin(), newPoints.end());
|
||||
}
|
||||
} else {
|
||||
int perpDir = 1;
|
||||
for (coordf_t y = gridSize; y <= (boundsY); y+= gridSize, perpDir *= -1) {
|
||||
points.push_back(Pointfs());
|
||||
Pointfs &newPoints = points.back();
|
||||
newPoints = zip(
|
||||
colinearPoints(Zpos, gridSize, critPoints, 0, boundsX),
|
||||
perpendPoints(Zpos, gridSize, critPoints, 0, boundsX, y, perpDir));
|
||||
if (perpDir == -1)
|
||||
std::reverse(newPoints.begin(), newPoints.end());
|
||||
}
|
||||
return points;
|
||||
}
|
||||
return points;
|
||||
}
|
||||
|
||||
// Generate a set of curves (array of array of 2d points) that describe a
|
||||
// horizontal slice of a truncated regular octahedron with a specified
|
||||
// grid square size.
|
||||
static Polylines makeGrid(coord_t z, coord_t gridSize, size_t gridWidth, size_t gridHeight, size_t curveType)
|
||||
// gridWidth and gridHeight define the width and height of the bounding box respectively
|
||||
static Polylines makeGrid(coordf_t z, coordf_t gridSize, coordf_t boundWidth, coordf_t boundHeight, bool fillEvenly)
|
||||
{
|
||||
coord_t scaleFactor = gridSize;
|
||||
coordf_t normalisedZ = coordf_t(z) / coordf_t(scaleFactor);
|
||||
std::vector<Pointfs> polylines = makeNormalisedGrid(normalisedZ, gridWidth, gridHeight, curveType);
|
||||
Polylines result;
|
||||
result.reserve(polylines.size());
|
||||
for (std::vector<Pointfs>::const_iterator it_polylines = polylines.begin(); it_polylines != polylines.end(); ++ it_polylines) {
|
||||
result.push_back(Polyline());
|
||||
Polyline &polyline = result.back();
|
||||
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
|
||||
polyline.points.push_back(Point(coord_t((*it)(0) * scaleFactor), coord_t((*it)(1) * scaleFactor)));
|
||||
}
|
||||
return result;
|
||||
std::vector<Pointfs> polylines = makeActualGrid(z, gridSize, boundWidth, boundHeight);
|
||||
Polylines result;
|
||||
result.reserve(polylines.size());
|
||||
for (std::vector<Pointfs>::const_iterator it_polylines = polylines.begin();
|
||||
it_polylines != polylines.end(); ++ it_polylines) {
|
||||
result.push_back(Polyline());
|
||||
Polyline &polyline = result.back();
|
||||
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
|
||||
polyline.points.push_back(Point(coord_t((*it)(0)), coord_t((*it)(1))));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// FillParams has the following useful information:
|
||||
// density <0 .. 1> [proportion of space to fill]
|
||||
// anchor_length [???]
|
||||
// anchor_length_max [???]
|
||||
// dont_connect() [avoid connect lines]
|
||||
// dont_adjust [avoid filling space evenly]
|
||||
// monotonic [fill strictly left to right]
|
||||
// complete [complete each loop]
|
||||
|
||||
void Fill3DHoneycomb::_fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
unsigned int thickness_layers,
|
||||
|
@ -142,27 +196,75 @@ void Fill3DHoneycomb::_fill_surface_single(
|
|||
{
|
||||
// no rotation is supported for this infill pattern
|
||||
BoundingBox bb = expolygon.contour.bounding_box();
|
||||
coord_t distance = coord_t(scale_(this->spacing) / params.density);
|
||||
|
||||
// Note: with equally-scaled X/Y/Z, the pattern will create a vertically-stretched
|
||||
// truncated octahedron; so Z is pre-adjusted first by scaling by sqrt(2)
|
||||
coordf_t zScale = sqrt(2);
|
||||
|
||||
// adjustment to account for the additional distance of octagram curves
|
||||
// note: this only strictly applies for a rectangular area where the total
|
||||
// Z travel distance is a multiple of the spacing... but it should
|
||||
// be at least better than the prevous estimate which assumed straight
|
||||
// lines
|
||||
// = 4 * integrate(func=4*x(sqrt(2) - 1) + 1, from=0, to=0.25)
|
||||
// = (sqrt(2) + 1) / 2 [... I think]
|
||||
// make a first guess at the preferred grid Size
|
||||
coordf_t gridSize = (scale_(this->spacing) * ((zScale + 1.) / 2.) / params.density);
|
||||
|
||||
// This density calculation is incorrect for many values > 25%, possibly
|
||||
// due to quantisation error, so this value is used as a first guess, then the
|
||||
// Z scale is adjusted to make the layer patterns consistent / symmetric
|
||||
// This means that the resultant infill won't be an ideal truncated octahedron,
|
||||
// but it should look better than the equivalent quantised version
|
||||
|
||||
coordf_t layerHeight = scale_(thickness_layers);
|
||||
// ceiling to an integer value of layers per Z
|
||||
// (with a little nudge in case it's close to perfect)
|
||||
coordf_t layersPerModule = floor((gridSize * 2) / (zScale * layerHeight) + 0.05);
|
||||
if(params.density > 0.42){ // exact layer pattern for >42% density
|
||||
layersPerModule = 2;
|
||||
// re-adjust the grid size for a partial octahedral path
|
||||
// (scale of 1.1 guessed based on modeling)
|
||||
gridSize = (scale_(this->spacing) * 1.1 / params.density);
|
||||
// re-adjust zScale to make layering consistent
|
||||
zScale = (gridSize * 2) / (layersPerModule * layerHeight);
|
||||
} else {
|
||||
if(layersPerModule < 2){
|
||||
layersPerModule = 2;
|
||||
}
|
||||
// re-adjust zScale to make layering consistent
|
||||
zScale = (gridSize * 2) / (layersPerModule * layerHeight);
|
||||
// re-adjust the grid size to account for the new zScale
|
||||
gridSize = (scale_(this->spacing) * ((zScale + 1.) / 2.) / params.density);
|
||||
// re-calculate layersPerModule and zScale
|
||||
layersPerModule = floor((gridSize * 2) / (zScale * layerHeight) + 0.05);
|
||||
if(layersPerModule < 2){
|
||||
layersPerModule = 2;
|
||||
}
|
||||
zScale = (gridSize * 2) / (layersPerModule * layerHeight);
|
||||
}
|
||||
|
||||
// align bounding box to a multiple of our honeycomb grid module
|
||||
// (a module is 2*$distance since one $distance half-module is
|
||||
// growing while the other $distance half-module is shrinking)
|
||||
bb.merge(align_to_grid(bb.min, Point(2*distance, 2*distance)));
|
||||
// (a module is 2*$gridSize since one $gridSize half-module is
|
||||
// growing while the other $gridSize half-module is shrinking)
|
||||
bb.merge(align_to_grid(bb.min, Point(gridSize*4, gridSize*4)));
|
||||
|
||||
// generate pattern
|
||||
Polylines polylines = makeGrid(
|
||||
scale_(this->z),
|
||||
distance,
|
||||
ceil(bb.size()(0) / distance) + 1,
|
||||
ceil(bb.size()(1) / distance) + 1,
|
||||
((this->layer_id/thickness_layers) % 2) + 1);
|
||||
Polylines polylines =
|
||||
makeGrid(
|
||||
scale_(this->z) * zScale,
|
||||
gridSize,
|
||||
bb.size()(0),
|
||||
bb.size()(1),
|
||||
!params.dont_adjust);
|
||||
|
||||
// move pattern in place
|
||||
for (Polyline &pl : polylines)
|
||||
pl.translate(bb.min);
|
||||
for (Polyline &pl : polylines){
|
||||
pl.translate(bb.min);
|
||||
}
|
||||
|
||||
// clip pattern to boundaries, chain the clipped polylines
|
||||
polylines = intersection_pl(polylines, expolygon);
|
||||
polylines = intersection_pl(polylines, to_polygons(expolygon));
|
||||
|
||||
// connect lines if needed
|
||||
if (params.dont_connect() || polylines.size() <= 1)
|
||||
|
@ -171,4 +273,4 @@ void Fill3DHoneycomb::_fill_surface_single(
|
|||
this->connect_infill(std::move(polylines), expolygon, polylines_out, this->spacing, params);
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
} // namespace Slic3r
|
|
@ -15,9 +15,6 @@ public:
|
|||
Fill* clone() const override { return new Fill3DHoneycomb(*this); };
|
||||
~Fill3DHoneycomb() override {}
|
||||
|
||||
// require bridge flow since most of this pattern hangs in air
|
||||
bool use_bridge_flow() const override { return true; }
|
||||
|
||||
protected:
|
||||
void _fill_surface_single(
|
||||
const FillParams ¶ms,
|
||||
|
|
Loading…
Reference in a new issue