orcaslicer/src/libslic3r/SLA/SLASupportTreeBuildsteps.hpp

290 lines
11 KiB
C++
Raw Normal View History

#ifndef SLASUPPORTTREEALGORITHM_H
#define SLASUPPORTTREEALGORITHM_H
#include <cstdint>
#include "SLASupportTreeBuilder.hpp"
namespace Slic3r {
namespace sla {
// The minimum distance for two support points to remain valid.
const double /*constexpr*/ D_SP = 0.1;
enum { // For indexing Eigen vectors as v(X), v(Y), v(Z) instead of numbers
X, Y, Z
};
inline Vec2d to_vec2(const Vec3d& v3) {
return {v3(X), v3(Y)};
}
// This function returns the position of the centroid in the input 'clust'
// vector of point indices.
template<class DistFn>
long cluster_centroid(const ClusterEl& clust,
const std::function<Vec3d(size_t)> &pointfn,
DistFn df)
{
switch(clust.size()) {
case 0: /* empty cluster */ return ID_UNSET;
case 1: /* only one element */ return 0;
case 2: /* if two elements, there is no center */ return 0;
default: ;
}
// The function works by calculating for each point the average distance
// from all the other points in the cluster. We create a selector bitmask of
// the same size as the cluster. The bitmask will have two true bits and
// false bits for the rest of items and we will loop through all the
// permutations of the bitmask (combinations of two points). Get the
// distance for the two points and add the distance to the averages.
// The point with the smallest average than wins.
// The complexity should be O(n^2) but we will mostly apply this function
// for small clusters only (cca 3 elements)
std::vector<bool> sel(clust.size(), false); // create full zero bitmask
std::fill(sel.end() - 2, sel.end(), true); // insert the two ones
std::vector<double> avgs(clust.size(), 0.0); // store the average distances
do {
std::array<size_t, 2> idx;
for(size_t i = 0, j = 0; i < clust.size(); i++) if(sel[i]) idx[j++] = i;
double d = df(pointfn(clust[idx[0]]),
pointfn(clust[idx[1]]));
// add the distance to the sums for both associated points
for(auto i : idx) avgs[i] += d;
// now continue with the next permutation of the bitmask with two 1s
} while(std::next_permutation(sel.begin(), sel.end()));
// Divide by point size in the cluster to get the average (may be redundant)
for(auto& a : avgs) a /= clust.size();
// get the lowest average distance and return the index
auto minit = std::min_element(avgs.begin(), avgs.end());
return long(minit - avgs.begin());
}
inline Vec3d dirv(const Vec3d& startp, const Vec3d& endp) {
return (endp - startp).normalized();
}
class PillarIndex {
PointIndex m_index;
using Mutex = ccr::BlockingMutex;
mutable Mutex m_mutex;
public:
template<class...Args> inline void guarded_insert(Args&&...args)
{
std::lock_guard<Mutex> lck(m_mutex);
m_index.insert(std::forward<Args>(args)...);
}
template<class...Args>
inline std::vector<PointIndexEl> guarded_query(Args&&...args) const
{
std::lock_guard<Mutex> lck(m_mutex);
return m_index.query(std::forward<Args>(args)...);
}
template<class...Args> inline void insert(Args&&...args)
{
m_index.insert(std::forward<Args>(args)...);
}
template<class...Args>
inline std::vector<PointIndexEl> query(Args&&...args) const
{
return m_index.query(std::forward<Args>(args)...);
}
template<class Fn> inline void foreach(Fn fn) { m_index.foreach(fn); }
template<class Fn> inline void guarded_foreach(Fn fn)
{
std::lock_guard<Mutex> lck(m_mutex);
m_index.foreach(fn);
}
PointIndex guarded_clone()
{
std::lock_guard<Mutex> lck(m_mutex);
return m_index;
}
};
// Helper function for pillar interconnection where pairs of already connected
// pillars should be checked for not to be processed again. This can be done
// in constant time with a set of hash values uniquely representing a pair of
// integers. The order of numbers within the pair should not matter, it has
// the same unique hash. The hash value has to have twice as many bits as the
// arguments need. If the same integral type is used for args and return val,
// make sure the arguments use only the half of the type's bit depth.
template<class I, class DoubleI = IntegerOnly<I>>
IntegerOnly<DoubleI> pairhash(I a, I b)
{
using std::ceil; using std::log2; using std::max; using std::min;
static const auto constexpr Ibits = int(sizeof(I) * CHAR_BIT);
static const auto constexpr DoubleIbits = int(sizeof(DoubleI) * CHAR_BIT);
static const auto constexpr shift = DoubleIbits / 2 < Ibits ? Ibits / 2 : Ibits;
I g = min(a, b), l = max(a, b);
// Assume the hash will fit into the output variable
assert((g ? (ceil(log2(g))) : 0) <= shift);
assert((l ? (ceil(log2(l))) : 0) <= shift);
return (DoubleI(g) << shift) + l;
}
class SupportTreeBuildsteps {
const SupportConfig& m_cfg;
const EigenMesh3D& m_mesh;
const std::vector<SupportPoint>& m_support_pts;
using PtIndices = std::vector<unsigned>;
PtIndices m_iheads; // support points with pinhead
PtIndices m_iheadless; // headless support points
// supp. pts. connecting to model: point index and the ray hit data
std::vector<std::pair<unsigned, EigenMesh3D::hit_result>> m_iheads_onmodel;
// normals for support points from model faces.
PointSet m_support_nmls;
// Clusters of points which can reach the ground directly and can be
// bridged to one central pillar
std::vector<PtIndices> m_pillar_clusters;
// This algorithm uses the SupportTreeBuilder class to fill gradually
// the support elements (heads, pillars, bridges, ...)
SupportTreeBuilder& m_builder;
// support points in Eigen/IGL format
PointSet m_points;
// throw if canceled: It will be called many times so a shorthand will
// come in handy.
ThrowOnCancel m_thr;
// A spatial index to easily find strong pillars to connect to.
PillarIndex m_pillar_index;
// When bridging heads to pillars... TODO: find a cleaner solution
ccr::BlockingMutex m_bridge_mutex;
inline double ray_mesh_intersect(const Vec3d& s,
const Vec3d& dir)
{
return m_mesh.query_ray_hit(s, dir).distance();
}
// This function will test if a future pinhead would not collide with the
// model geometry. It does not take a 'Head' object because those are
// created after this test. Parameters: s: The touching point on the model
// surface. dir: This is the direction of the head from the pin to the back
// r_pin, r_back: the radiuses of the pin and the back sphere width: This
// is the full width from the pin center to the back center m: The object
// mesh.
// The return value is the hit result from the ray casting. If the starting
// point was inside the model, an "invalid" hit_result will be returned
// with a zero distance value instead of a NAN. This way the result can
// be used safely for comparison with other distances.
EigenMesh3D::hit_result pinhead_mesh_intersect(
const Vec3d& s,
const Vec3d& dir,
double r_pin,
double r_back,
double width);
// Checking bridge (pillar and stick as well) intersection with the model.
// If the function is used for headless sticks, the ins_check parameter
// have to be true as the beginning of the stick might be inside the model
// geometry.
// The return value is the hit result from the ray casting. If the starting
// point was inside the model, an "invalid" hit_result will be returned
// with a zero distance value instead of a NAN. This way the result can
// be used safely for comparison with other distances.
EigenMesh3D::hit_result bridge_mesh_intersect(
const Vec3d& s,
const Vec3d& dir,
double r,
bool ins_check = false);
// Helper function for interconnecting two pillars with zig-zag bridges.
bool interconnect(const Pillar& pillar, const Pillar& nextpillar);
// For connecting a head to a nearby pillar.
bool connect_to_nearpillar(const Head& head, long nearpillar_id);
bool search_pillar_and_connect(const Head& head);
// This is a proxy function for pillar creation which will mind the gap
// between the pad and the model bottom in zero elevation mode.
void create_ground_pillar(const Vec3d &jp,
const Vec3d &sourcedir,
double radius,
long head_id = ID_UNSET);
public:
SupportTreeBuildsteps(SupportTreeBuilder & builder, const SupportableMesh &sm);
// Now let's define the individual steps of the support generation algorithm
// Filtering step: here we will discard inappropriate support points
// and decide the future of the appropriate ones. We will check if a
// pinhead is applicable and adjust its angle at each support point. We
// will also merge the support points that are just too close and can
// be considered as one.
void filter();
// Pinhead creation: based on the filtering results, the Head objects
// will be constructed (together with their triangle meshes).
void add_pinheads();
// Further classification of the support points with pinheads. If the
// ground is directly reachable through a vertical line parallel to the
// Z axis we consider a support point as pillar candidate. If touches
// the model geometry, it will be marked as non-ground facing and
// further steps will process it. Also, the pillars will be grouped
// into clusters that can be interconnected with bridges. Elements of
// these groups may or may not be interconnected. Here we only run the
// clustering algorithm.
void classify();
// Step: Routing the ground connected pinheads, and interconnecting
// them with additional (angled) bridges. Not all of these pinheads
// will be a full pillar (ground connected). Some will connect to a
// nearby pillar using a bridge. The max number of such side-heads for
// a central pillar is limited to avoid bad weight distribution.
void routing_to_ground();
// Step: routing the pinheads that would connect to the model surface
// along the Z axis downwards. For now these will actually be connected with
// the model surface with a flipped pinhead. In the future here we could use
// some smart algorithms to search for a safe path to the ground or to a
// nearby pillar that can hold the supported weight.
void routing_to_model();
void interconnect_pillars();
// Step: process the support points where there is not enough space for a
// full pinhead. In this case we will use a rounded sphere as a touching
// point and use a thinner bridge (let's call it a stick).
void routing_headless ();
inline void merge_result() { m_builder.merged_mesh(); }
static bool execute(SupportTreeBuilder & builder, const SupportableMesh &sm);
};
}
}
#endif // SLASUPPORTTREEALGORITHM_H